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ABSTRACT  
This paper studies the effectiveness of the Queensland School Transport Safety 
Program (SafeST). Our main general conclusion is that good statistical practice can 
improve the accuracy of forecasts of the effects of a countermeasure by an order of 
magnitude. Conversely, poor practice, in particular an inappropriate model 
specification coupled with a small data sample can produce imprecision. In particular, 
we suggest that unobserved demographics are generally best modelled by stochastic 
trends, as these allow for the demographic effect to wander away from a linear trend 
if this improves the fit. We show how the model can be estimated by GLS in these 
circumstances and demonstrate that efficiency gains can result.  

1. INTRODUCTION  
This paper describes our experience of evaluating the effectiveness of a road safety 
countermeasure, Queensland Transport’s SafeST Program.1 The data to be analysed 
present themselves as a panel, that is, the countermeasure acts through time at a 
number of different sites.  
In the course of this work we have developed better statistical practice that will, in 
many instances, enable the analyst to gauge the true impact of countermeasures, 
and hence allocate scarce resources more efficiently. Our work is capable of wide 
application. Road safety countermeasures are notoriously hard to evaluate because 
their effects tend to be lost in the background ‘noise’ of road crashes. As a result, it is 
easy for resources to be devoted to countermeasures that offer little or no benefit 
(indeed, some may be counterproductive).  
Our work demonstrates that it is possible to achieve gains in accuracy (that is, in 
econometric efficiency) from three sources: choosing the appropriate estimation 
procedure, parsimony in model selection, and including the intensity of the 
countermeasure as an explanatory variable.  

1.1 CHOOSING THE RIGHT ESTIMATION PROCEDURE  
Firstly, use of an appropriate estimation procedure can increase the efficiency of 
estimates by a considerable margin. By ‘appropriate’ here we mean a procedure that 

1                                                 

1 The SafeST Program aims to improve road safety for school children through improvements to 
pedestrian facilities, passenger set-down and pick-up areas, cycling paths and traffic management in the 
vicinity of schools. It is managed by Queensland Transport (QT) in partnership with the Queensland 
Department of Main Roads (DMR) and local authorities. Since it began in 1996, a total of over $30 
million has been spent on over 600 SafeST projects affecting over 400 schools throughout Queensland. 
Annual spending is currently about $3.5 million. 
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takes into account the error structure of the underlying model. One might have 
information on this structure from theoretical considerations or from plausible 
assumptions about how the data arise. As an example of the former, the assumption 
that casualty data follow a Poisson process gives specific information about the 
magnitude of the realisation errors in observed data. As an example of the latter, 
unobserved demographics in the model can give rise to an error structure which, if 
allowed for in estimation, can yield useful efficiency gains.  

1.2 PARSIMONY IN MODEL SELECTION  
The second source of efficiency gains arises from parsimony in model selection. The 
amount of data to be exploited imposes limits on the number of variables one can 
include in the model without making the estimates of the parameter of interest 
hopelessly diffuse. For example, the policy variable to be analysed in this study is 
quite strongly trended. If one seeks to allow for unobserved demographics by the 
inclusion of linear trends, the correlation between these and the policy variable 
makes estimates of the policy parameter quite imprecise. Note the trade-off between 
bias (as would arise if trends were omitted when, in fact, they are genuinely present) 
and efficiency.  
One possibility is to seek parsimony by testing for the exclusion of variables one 
suspects are causing problems; however, reductions in estimated standard errors 
obtained by this procedure will be partly illusory because of the ‘pre-testing’ problem. 
Another possibility is to transform the data so as to make unobserved demographics 
less of a problem. Below we shall adopt as dependent variable casualties at treated 
sites relative to casualties at similar untreated sites. This device may reduce or 
eliminate the need to model unobserved demographics (as well as offering other 
related econometric benefits).  

1.3 COUNTERMEASURE INTENSITY  
The third source of efficiency gains we consider here arises from measurement of 
countermeasure intensity. It will often be the case that a countermeasure acts with 
measurably different intensities at different sites. If the underlying intensity-response 
relationship is estimated, then the average response calculated from this will be more 
efficient than a procedure which acknowledges only the treated-untreated dichotomy: 
reduction in standard errors should be proportional to the coefficient of variation of 
treatment intensities.  

1.4 STRUCTURE OF THIS PAPER  
The paper is organised as follows. Section 2 contains the most novel material in the 
paper: in it we present our empirical results and show that unobserved demographics 
in the model are best modelled by the statistical process known as a ‘random walk’. 
In section 3 we use simulation methods to corroborate and amplify the conclusions 
from section 2. Section 4 concludes.  
A technical appendix presents the statistical framework of the policy analysis, 
describes the model to be estimated, and analyses the statistical properties of the 
estimators we consider, particularly their efficiency. It also details the Monte Carlo 
simulation of estimation procedures referred to above.  
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2. EVALUATION OF THE SAFEST PROGRAM  
In this section we describe our analyses of crash data relevant to the SafeST 
program. The Technical appendix details the analytical method.  

2.1 DEPENDENT VARIABLE  
In our analysis, the dependent variable for the analysis is formed from all pedestrian 
casualties occurring within one kilometre of Queensland schools between 1992 and 
2001, disaggregated by treated and control (non-treated) schools (Figure 1). For 
analytical purposes, these were further disaggregated by 11 Statistical Divisions 
(SD).2 We thus study 22 time-series—one treated and one control for each SD. The 
dependent variable is the difference between casualties per capita at treated and 
untreated sites. We thus have 110 annual3 observations of the dependent variable 
(that is, 11 SDs for 10 years). The unit of measurement for casualties was chosen to 
be average per capita casualties at treated sites, 1992-96.  

2.2 INDEPENDENT VARIABLES  
We considered two variants of the forcing variable (that is, the variable that measures 
the effect of SafeST treatments in ‘forcing’ down the number of crashes). The first 
was a simple dummy variable for the years the SafeST projects were in place, 1997-
2001. This is less than satisfactory given that projects are of different types and 
intensities at different sites.  
Our second variable was cumulated expenditure per capita at treated sites. The unit 
of measurement was chosen to be average cumulated expenditure per capita over all 
treated sites, 1997-2001. This was done to ensure rough comparability between the 
parameter on the dummy variable (the average effect of SafeST treatment) and the 
parameter on the expenditure term (the effect on casualties of an average SafeST 
expenditure).  
We also conducted some experiments allowing for a site-specific time trend in the 
estimating equation.  

2.3 METHOD  
Our data form a panel of 11 regions and 10 years. This could be estimated by 
ordinary least-squares regression (OLS). But because regional populations differ 
substantially, it can be shown (see appendix section 3) that weighted least-squares 
estimation (WLS) is appropriate. In support of this, we show by simulation (see 
appendix section 4) that WLS reduces standard errors by a factor of about two as 
compared to OLS. We can also allow for stochastic trends in the underlying 

1                                                 

2 Although a geographic smaller unit was perhaps desirable (appendix section 3) this level of 
aggregation was forced on us by data availability. This explains why the data were aggregated by SD, 
whereas in our simulation study, which was not data-constrained, we used a smaller geographic unit, 
the SSD. Since resources were unavailable to estimate population at treated and non-treated sites, SD 
populations are observed at the census years, but interpolated between census years and apportioned 
between treated and untreated sites in the proportion of average casualties at treated and untreated 
sites observed between 1992 and 1996 in each SD.  
3 There are small efficiency gains to be had from using monthly data but we did not regard them to be 
sufficiently large to warrant the added complexity of a monthly analysis.  
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demographic data by means of generalised least-squares (GLS) estimation (see 
appendix  section 5).  

2.4 RESULTS OF THE EVALUATION  
We have analysed the data by means of six methods that differ in the definition of the 
forcing variable (continuous or dichotomous), in estimation method (OLS, WLS or 
GLS), and by type of trend (if any) (Table 1 and Figure 2). 

Table 1  Estimating the effect of SafeST by different methods 

Model Forcing variable Estimation Method  Trend Estimate  Std 
Error 

1 Expenditure per capita WLS No -0.030 0.028 

2 Expenditure per capita OLS No -0.125 0.069 

3 Intervention dummy WLS No -0.048 0.032 

4 Intervention dummy OLS No -0.070 0.166 

5 Intervention dummy WLS Yes -0.149 0.095 

6 Expenditure per capita GLS Stochas
tic 

-0-023 0.015 

Source: ARRB TR calculations. Note: None significant at the 5% level. 

Model (1) has expenditure as the forcing variable, uses WLS, and does not fit a 
trend. The estimate of the expenditure effect is –0.030. This can be interpreted as the 
proportional reduction in casualties at treated sites arising from having in place an 
average SafeST level of per capita expenditure. The estimate is not significant at the 
5% level, but the standard error is small. The implication is that this model would 
have been capable of detecting the impact of SafeST had SafeST been more 
effective. As it is, we conclude that SafeST is probably either ineffective or nearly so.  
Models (1) to (4) demonstrate the efficiency gains of WLS over OLS, as supported by 
simulation using artificial data.  
Comparing models (1) and (3) shows that using expenditure in place of the 
intervention dummy reduces standard errors by a small amount.  
In model (5) we allow each site to have its own trend. The standard error increases 
by a large amount in this experiment, in line with the simulation results (section 3). 
The residual sum of squares is virtually the same between (1) and (5), so an F-test 
for the exclusion of trend variables is easily passed. We interpret this to mean that 
trends are unnecessary in the model, serving only to increase the standard error of 
the parameter of interest.  
Finally in model (6) we allow for stochastic trends. The parameter estimate is not 
large, - 0.023, but the standard error is very small: the probability level of the 
estimate is 0.112, approaching significance at the 5% level. In terms of precision this 
is the best performing model, and demonstrates the advantage of using stochastic 
trends in model specification.  
None of the 95% confidence intervals associated with these estimates excludes zero, 
but there is consistency in the results. Models (1) and (6) are most favoured by our 
theoretical analysis; both suggest SafeST reduces casualties by less than 10%—a 
valuable, if disappointing, conclusion.  



 Using Panel Data to Evaluate Road Safety Countermeasures  
Nigel Rockliffe, James Symons & Dimitris Tsolakis 

Page 5 

3. SIMULATION STUDY  
In this section we demonstrate the pros and cons of alternative model specifications 
by means of a simulation study. The technical appendix details the analytical method.  

3.1 STUDY DESIGN AND DATA GENERATION  
For simulation purposes we considered Queensland as consisting of 27 regions, 
notionally one for each Statistical Subdivision.4 Each region is considered to be 
subjected to a treatment at the end of year 5, and this treatment is in force for the 
subsequent five years. For each region there is a corresponding region which is 
never treated (the control). Thus we have five years of untreated data (both treated 
sites and controls) followed by five years of treatments at the treated sites.  

Crashes are generated by a Poisson process whose mean falls by 10% after the 
treatment at the end of year 5. A particular experiment consists of generating ten 
years of annual data of random variables, wherein the mean of the random variable 
falls by 10% at the treated sites at the end of the year 5, remaining constant 
elsewhere (and hitherto). There are no trends in mean.  
These data describe a world in which, in truth, the treatment reduces casualties by 
10% at each treated region. This known effect is then estimated by a variety of 
estimation techniques. The results from a number of such experiments allow 
comparison of their effectiveness.  

3.2 ESTIMATION METHODS  
We argued above that linear models offer some advantages. In this approach, the 
dependent variable is the difference between casualty rates in the treated and control 
sites. This is then modelled as linear function of a site-specific trend and a single 
dummy variable on the intervention periods.  
This can be estimated by OLS, but the assumption that casualty data follow a 
Poisson distribution implies that the variance of the residuals will be inversely 
proportional to the population of the site. In this case, a version of WLS will be 
superior to OLS.  
Finally, fitting a constant and trend will reduce efficiency if these variables are not 
needed to avoid misspecification. By construction, the artificial data have no constant 
or trend so it is possible to demonstrate by simulation the effect of their superfluous 
inclusion.  

3.3 RESULTS OF THE SIMULATION  
We have computed the mean and standard deviation from 1000 experiments (Table 
2 and Figure 3). For the first three procedures, the 95% confidence intervals 
associated with the typical estimate all include zero. In particular, one would not to 
reject at the 5%level the null hypothesis that the policy had no effect on casualties. In 
contrast, the confidence interval for the fourth procedure excludes zero and is 
approaching a satisfactory level of precision. This indicates a substantial return to the 
employment of an efficient procedure.  

1                                                 

4 See note 2 
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In sum, Monte Carlo simulation analysis of the linear model suggests it performs well. 
Bias is small and the method seems robust to technical assumptions. The estimates 
of our linear models have smaller standard errors once heteroskedasticity is allowed 
for. WLS tends to halve the error variance; and removing the constant and trend 
reduces the error variance to about a third.  

Table 2  Simulated estimates of treatment effect of 10% reduction in casualties 

 Estimated Method Mean Std Dev 

Linear OLS with trend - 0.103 0.145 

Linear WLS with trend - 0.102 0.073 

Linear OLS no trend - 0.100 0.051 

Linear WLS no trend - 0.101 0.025 
         Source: ARRB TR calculations.  

4. CONCLUSIONS  
This paper studies the effectiveness of the Queensland School Transport Safety 
Program (SafeST). Our main conclusion is that good statistical practice can improve 
the accuracy of forecasts of the effects of a countermeasure by an order of 
magnitude as compared with a more naïve procedure. Conversely, poor practice, in 
particular an inappropriate model specification coupled with a small data sample, can 
produce imprecision. In particular, we suggest that unobserved demographics are 
generally best modelled by stochastic trends, and we show how this can be done 
through the appropriate choice of estimation method.  
The consequences of our findings are potentially far-reaching. Road safety 
countermeasures are notoriously hard to evaluate because their effects tend to be 
lost in the background ‘noise’ of road crashes. As a result, it is easy for resources to 
be devoted to countermeasures that offer little or no benefit (indeed, some may be 
counterproductive). In this paper we offer better statistical practice that will, in many 
instances, enable the analyst to gauge the true impact of countermeasures, and 
hence allocate scarce resources more efficiently.  
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TECHNICAL APPENDIX  

1. MODEL SET-UP  

GENERAL STATISTICAL FRAMEWORK  

Let itzz = be casualties in region i at time t . We assume two variables act causally 
on z : d , which we shall call the policy variable or the variable of interest, and r , a 
collection of extraneous variables. A new countermeasure5 is envisaged which will 
change the values of d ; we wish to estimate the expected value of z  in the new 
regime. We assume in the original regime the expected value of z  conditional on d  
and r  is linear:  

(1) rdrdzE γβ +=),|(  

The implicit assumption is that the relationship (1) remains the same in the new 
regime, and hence may be used to estimate the value of z  in the new regime. For 
this assumption to be remotely plausible, it is necessary that r should include all 
causal variables that are correlated with d in the old regime, as otherwise the 
conditional expectation (1) would be likely to change over the regime change.  

If it is assumed that the countermeasure will leave r  unchanged, then the parameter 
γ  need not be calculated, since the object of interest is the difference between z in 
the two regimes, and r is common. In these circumstances one might describe r  as 
a nuisance variable. 

We write  

(2) εγβ ++= rdz  

where  

(3) ),|( rdzEz −=ε  

is the so-called regression error.  

CASUALTY MODEL  
Specifically we shall assume (2) takes the form  

(4) ititititit rdPz εγβ ++=  

1                                                 

5 Note that the ‘new countermeasure’ will often be the absence of an existing countermeasure. Thus, to 
evaluate a countermeasure that has been active over some period, one will consider what would have 
happened if the countermeasure had not been implemented. The old regime is the countermeasure, the 
new regime is the absence of it.  
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where itP is a measure of the appropriate population in i  at t . This relationship is 
observed in the pre-change regime and the observed parameters are to be used to 
evaluate the new regime according to (1).  

CONTROL REGIONS  
The most obvious candidates for extraneous variables r  are demographic trends, 
capturing perhaps changing propensities for per-capita casualties as the population 
structure changes, and state or national trends, arising perhaps from changing 
attitudes to safety (themselves possibly a response to public policy). As noted above, 
if these factors are not included as conditioning variables, it is unlikely that (1) will 
remain stable over the regime change if the policy variable itself is trended (as will be 
the case for an countermeasure that changes d  after some date). It is inviting to 
measure these conditioning variables by deterministic linear trends but there is no 
guarantee that such variables will remove all of the correlation between the 
unobserved true trends and the policy variable.  
A large part of this problem is evaded by the use of control regions. Assume for each 
region i there is another region i′ where the countermeasure acts differently and let 

d∆ etc. be the difference between d  in i and i′ . Then (4) becomes  

(5) ( ) ititititit rdPz εγβ ∆+∆+∆=∆ /  

and may be used to infer the parameter of interest. If region and control are selected 
to be similar in the relevant characteristics, it is much more plausible to measure r∆  
by linear trends, or to omit it entirely.  

2. REGRESSION ESTIMATION OF THE CASUALTY MODEL  
Assume we have a sample of data generated by (4) or (5) written in the form  

(6) εδ += Xz  

where z  is now a column vector of observations on itz , X  is the matrix of 
observations on the causal variables, δ  is the column vector of required parameters, 
and ε  is a column vector of regression errors. The ordinary least squares (OLS) 
estimate of δ  is given by the matrix product  

(7) ( ) zXXXOLS ′′= −1δ̂  

The OLS estimator is unbiased in the sense that its expectation, conditional on the 
full set of observations on the causal variables, is δ   

(8) δδ =)|ˆ( XE OLS   

provided that the errors have zero conditional mean  

(9) 0)|( =XE ε  

which we shall assume is the case.  
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3. EFFICIENCY ISSUES  
A particular requirement of this study was to obtain accurate estimates from limited 
data, that is, we require our estimates to have minimal sampling error. If in addition to 
(9) a model such as (6) has the property that the errors are independent with 
common variance, compactly written in matrix form as  

(10) IXE 2)|( σεε =′  

then the Gauss-Markov theorem tells us that OLS is best linear unbiased (BLUE), 
that is, it has the least variance of all unbiased estimators that are linear functions of 
the data z . Thus if (10) holds, OLS would be just about the best one could do. As it 
happens, however, (10) is unlikely to hold for casualty data.  

CASUALTY DATA AND THE POISSON PROCESS  
It is commonly assumed that casualty data are generated by Poisson random 
variables. This is attractive because the underlying assumption of the Poisson – that 
occurrences within small intervals of time are independent events of low probability – 
seems suited to these data. Assume therefore that casualty data are Poisson and 
generated by (4). Then, exploiting the fact that Poisson random variables have equal 
mean and variance, one obtains  

(11) ( ) ititit PrVar γε =  

(if 0=β ). Thus the itε do not have common variance if the population varies over 

sites, that is, the residuals are not homoskedastic. If so, OLS is not the most efficient 
estimator. When one employs control regions, (11) takes the form  

(12) ( ) titiititit PrPrVar ′′+=∆ γγε  

Thus, if population varies over sites, the relationship (10) will fail and the Gauss-
Markov theorem will no longer guarantee efficiency.  

THE EXTENDED GAUSS-MARKOV THEOREM  
Consider the problem of estimating (10) for a general covariance matrix, known up to 
a scale parameter 2σ  

(13) Ω=′ 2)|( σεε XE  

The generalised least squares estimator (GLS) is given by  

(14) ( ) ( )zXXXGLS
111ˆ −−− Ω′Ω′=δ  

The extended Gauss-Markov theorem says that this estimator is BLUE. Thus, if we 
are able to nominate a covariance structure for the error process, we can claim 
estimates derived from (14) are efficient – the best that can be done.  
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GLS can be interpreted as follows. The data vectors are transformed by the matrix 
square root 2/1−Ω , that is, we calculate XX 2/1~ −Ω=  etc. One can apply this 
transformation to (6) in which case IE =′)~~( εε . The transformed residuals now 
satisfy (10) so that the ordinary Gauss-Markov theorem applies to the transformed 
equation and one can deduce that the OLS estimate  

(15) ( ) ( )zXXXGLS
~~~~ˆ 1 ′′=

−
δ  

is BLUE. It can easily be verified that formulae (14) and (15) are identical.  

‘WEIGHTED LEAST SQUARES’ FOR CASUALTY MODELS  
How might the covariance matrix look for a model such as(5)? It is reasonable to 
assume the off-diagonal entries are zero: within a given region, the errors can be 
thought of as random realisation errors; across regions, estimating casualties relative 
to a control should eliminate correlations due to common influences such as the 
weather. The diagonal of the covariance matrix consists of the variances of the itε . If, 
as a first approximation, average casualty rates are constant across regions, then 
(12) implies these variances are proportional to tiit PP ′+ 11 . Thus the structure matrix 
Ω  can be taken to have terms such as this down the diagonal, and to be zero 
elsewhere. This matrix can then be used in (14).  
It turns out that this procedure amounts to weighting each observation by the quantity 
( ) 5.011 −

′+ tiit PP and then estimating by OLS. This estimator is called weighted least 
squares (WLS). The WLS procedure is sometimes called ‘adjusting for 
heteroskedasticity’.  

INEFFICIENCY FROM SUPERFLUOUS TRENDS  
Fitting superfluous variables to a model can lead to losses in efficiency, in particular if 
region-specific constant and trend are fitted to the model. The point of these extra 
two variables is to pick up any systematic divergence between treated site and 
control over the period (demographics, say). If the controls are well selected, this 
may not be necessary and there are substantial efficiency gains to excluding these 
variables when they are not required. The reason is that a linear trend is often 
somewhat correlated with an countermeasure variable, which makes it harder to 
estimate its effect with precision.  

The upshot is that excluding the constant and particularly the trend is most desirable 
if it can be supported. Essentially, the gain in efficiency on offer here is a premium for 
careful selection of controls.  

INEFFICIENCY ARISING FROM AGGREGATION  
In this section we investigate whether, in seeking to obtain regression estimates of 
some parameter of interest, it is better to work with aggregated or disaggregated 
data. The data in this study form a panel: observations are indexed by time and 
place, and clearly one can aggregate along both dimensions. For example, one could 
decide to work with annual casualty data rather than monthly or daily data; equally 
one might decide to work with Queensland-wide data rather than SSD or SLA data. 
There is a duality between aggregating over time and aggregating over region, and 
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the properties of temporal aggregation will usually be reflected in those of spatial 
aggregation and vice-versa.  
We assume the data are given by the model  

(16) εβ += dz   

We shall assume these data are arranged as column vectors. We assume that A is 
an aggregator matrix, that is, its rows consist of 1s and 0s so that Az  etc. is the 
variable z  aggregated in the desired way. These rows are essentially dummy 
variables on the items to be aggregated. The aggregated equation takes the form  

(17) εβ AAdAz +=  

Assume the errors in (16) satisfy (10) so that OLS is BLUE. The errors in (16) will not 
in general satisfy (10) but applying optimal GLS to (17) gives  

(18) 
dQd
dQz

A

A
A ′

′
=β̂  

where ( ) AAAAQA
1−′′= . The relative efficiency of OLS applied to (16) versus GLS 

applied to (17) is given by  

(19) 
( )
( ) dd

dQd
Var
Var A

A
′

′
=

β
β
ˆ
ˆ

 

Equation (18) shows that GLS applied to the aggregated equation is a linear function 
of the data z . The Gauss-Markov theorem then immediately implies that OLS applied 
to the disaggregated equation must be more efficient. The extent of the efficiency 
gain is given by the RHS of (19), which can be interpreted as the 2R  from a 
regression of d on the indicator dummies making up the rows of A . The fitted values 
from such a regression will consist of the values of d replaced by their averages over 
the aggregated values. The 2R is unity if and only if the values to be aggregated are 
constant.  

The upshot of this discussion is that it is harmless to aggregate over values for which 
the policy variable shows no variance. Thus if the countermeasure were identical 
between regions, it would do no harm to consider them as a single region; equally, if 
a countermeasure acted constantly within years, one might as well consider annual 
data.6  

1                                                 

6 As an example, assume one wishes to test the hypothesis that more people go to the beach on hot 
days, and assume daily data are available for beach attendance. It is clear that one could establish a 
good relationship between temperature and beach-going with the data of even a single year. 
Aggregating to annual data means that the purported relationship would be between annual beach 
attendance and annual average temperature; clearly this would be more difficult to establish. Estimating 
in annual data will not produce bias, but will produce more diffuse estimates of the temperature effect. 
The intuition is that, in general, averaging loses information: the temporal connection between cause 
and effect. Now hypothesise a relationship between beach-going and leap years. One could test this in 
data of either frequency by regressing attendance on a dummy variable for leap years. Since this 
dummy is constant within a given year (for any particular beach), the above principle tells us that 
estimating in annual data loses no efficiency. Efficiency would be lost, however, if the model were 
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EFFICIENCY GAINS FROM MEASURING COUNTERMEASURE INTENSITY  
Consider a countermeasure that varies in intensity, and assume that the average 
response is all that is required for the policy analysis. An unbiased estimate of the 
countermeasure can be obtained from the average response in treated areas relative 
to untreated areas. Alternatively, if the intensity itself can be measured, then the 
response-intensity parameter can be obtained by the methods discussed above and 
the average response to the countermeasure obtained accordingly.  

The proportional reduction in the error-variance obtained by the intensity-response 
regression will, in this simple framework, be the square of the coefficient of variation 
of the policy variable. Thus there are efficiency gains to be had by measurement of 
countermeasure intensity if these vary over time and by site. If for example a 
countermeasure involves capital expenditure, it may be valuable to define 
countermeasure intensity as cumulated expenditure per head. In some 
circumstances, of course, differences in intensity may be difficult to measure.  

4. SIMULATION STUDY OF THE METHODS  
We demonstrated some of these efficiency gains and losses in a simulation study.  

STUDY DESIGN  

The variable itz  is some measure of casualties in region i  at time 
,...1,,...,1, == tNit . Region i  is subjected to a treatment at time ,...1, +TT  We 

assume for each i  there is a corresponding region i′  which is never treated (the 
control). We assume we have five years of untreated data (treated sites and controls) 
followed by five years of treatment at the treated sites. The regions are notionally the 
27 Queensland SSDs. It is assumed that )( itzE  falls by 10% at the treatment.  

DATA GENERATION  

Our basic analysis assumes that the itz  are generated by a Poisson process whose 
mean falls by 10% after the treatment at the end of the fifth year. Data are generated 
according to (4) and (5). Specifically, itz  was taken to be Poisson with mean 

( )ittit rdP +β  where we take itP  as the average casualty rate at SSD i  between 1992 
and 2001, the casualty rate itr  is taken to be unity, 1.0−=β , and td  is a dummy 
variable for the treated years. (The implicit assumption is that the casualty rate does 
not vary over site; choosing population equal to average casualties then amounts to 
a choice of units of measurement for the population.)  
A particular experiment consists of generating ten years of annual data of random 
variables, wherein the mean of the random variable falls by 10% at the treated sites 
at the end of the fifth year, remaining constant elsewhere (and hitherto). There are no 
trends in mean. These data describe a world in which, in truth, the treatment reduces 
casualties by 10% at each treated SSD. This known effect is then estimated by a 
variety of estimation techniques. The results from a number of such experiments 
allow comparison of the effectiveness of different techniques.  

1                                                                                                                            
estimated in biannual data.  
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ESTIMATION METHODS  
The dependent variable is the difference between casualty rates in the treated and 
control sites. This is modelled as linear function of a single dummy variable on the 
countermeasure periods. This can be estimated by OLS but, as discussed in section 
3, the assumption that casualty data are Poisson implies that the variance of the 
residuals will be inversely proportional to the population of the site; in this case, a 
version of WLS will be superior to OLS. Finally, we pointed out above that fitting a 
constant and trend will reduce efficiency if these variables are not needed to avoid 
misspecification. By construction, the artificial data have no constant or trend so it is 
possible to demonstrate by simulation the effect of their superfluous inclusion.  

RESULTS  
Table 2 gives the mean and standard deviation of the results from 1000 applications 
of four estimation procedures (OLS and WLS by trend and no trend). Note that all 
four procedures are unbiased (less than two standard errors from the true value of 
0.10). WLS tends to halve the error variance; removing the constant and trend 
reduces the error variance to about one third. There are thus substantial gains to 
WLS and to omitting the trend if this can be supported.  
In a given empirical study, one will have a single estimate and a single estimated 
standard error. A typical estimate might be the mean reported in the table, with 
standard error given by the tabulated standard deviation. For the first three 
procedures, the 95% confidence intervals associated with the typical estimate all 
include zero. In particular, one would tend not to reject at the 5%level the null 
hypothesis that the countermeasure had no effect on casualties. In contrast, the 
confidence interval for the WLS-no trend procedure is approximately 05.010.0 ± , 
which excludes zero and is approaching a satisfactory level of precision. This 
indicates a substantial return to the employment of an efficient procedure.  

5. STOCHASTIC OR DETERMINISTIC TRENDS?  

STOCHASTIC TRENDS  
We have argued that if the selection of the control-regions is good enough, it may not 
be necessary to include linear trends in the model, since both region and control will 
be subject to similar influences—except for the countermeasure. It is obviously useful 
in principle to allow for the possibility of separate developments at sites but, as 
argued in section 3 and demonstrated in section 4, this may come at the price of 
increased diffuseness of estimates.  
A modern idea, derived from time series analysis of macroeconomic data, is that 
omitted demographic variables are unlikely to be well measured by deterministic 
linear trends (or higher-order polynomials). With a linear trend, the change in the 
demographic variable is modelled as a constant from period to period. It is a natural 
generalisation to assume that the change is stochastic. Consider therefore the model  

(20) tt cr η+=∆  

where tr∆ is the change in demographic variable tr , c  is a constant , and tη is a 
random variable with zero mean. If it is further assumed that tη  is serially 
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uncorrelated with constant variance—in which case tη  is referred to as white noise—
then the process tr∆ is known as a random walk with drift c . Writing (20) in the form 

ttt crr η++= −1 and back-substituting, one can recast the equation in the form  

(21) tt ctrr ηηη +++++= ...210  

where 0r  is the pre-sample value of the demographic variable. Equation (21) 
expresses tr  as the sum of a linear trend and the driftless random walk  

(22) tt ηηηω +++= ...21  

A driftless random walk is a wandering series: it is as likely to go up as down, 
irrespective of its current value. It will very often have apparent local trends, and will 
return to its starting value quite infrequently (indeed, it is more likely never to return 
than to spend half its time above, half below its initial value). Variables of the form 
(21) or (22) are called stochastic trends in contrast to the deterministic trend given by 
a linear function of time.  
It is clear that omitted demographics will be better represented by stochastic trends. 
Our aim is to see how stochastic trends change estimation techniques and to 
quantify likely changes in the accuracy of estimates.  

STOCHASTIC TRENDS AND THE GLS ESTIMATOR  
Assume for the moment that we have data from a single site. The model we wish to 
estimate is, as before, of the form  

(23) tttt rdz εβ ++=  

where is tz  casualties in period t, td is the countermeasure variable and tε  is a 
stochastic error which we shall take to be white noise. We assume tr  is a stochastic 
trend given by (21). Substituting into (23) from (21) we find  

(24) tttt ctrdz εωβ ++++= 0   

We wish to estimate β. This model is identical to the models studied above except in 
one respect: the error process is now  

(25) tttu εω +=  

that is, the sum of a driftless random walk and a white noise process. Each tu  will 
have zero conditional mean, implying that an OLS estimate of β derived from (24) will 
be unbiased, but the errors are correlated at different dates so the Gauss-Markov 
theorem does not apply—OLS is not necessarily BLUE. Moreover the standard 
errors of the OLS estimates calculated in the usual way are no longer correct. In this 
case GLS is an appropriate estimation technique as discussed in section 3.  



 Using Panel Data to Evaluate Road Safety Countermeasures  
Nigel Rockliffe, James Symons & Dimitris Tsolakis 

Page 15 

Efficiency gains from GLS when there are stochastic trends 

We shall obtain some formulae for the relative efficiency of GLS over OLS. Write (24) 
in the stacked vector form  

(26) ucvvrdz +++= 210β  

where 1v is the vector of ones , 2v is the trend vector and tttu εω += . We assume the 
covariance matrix of the error process u is known  

(27) ( ) Ω= 2σ'uuE  

up to the scale parameter 2σ . We are interested only in the parameter β so we purge 
(26) of the v  vectors. Let V be the matrix whose columns are the two v vectors and 
let VM be the projection that removes them, that is, xMV  is the vector of residuals of 
a regression of any vector x  on the v  vectors. The two estimators are  

(28) dMddzM VVOLS ′=β̂  

and  

(29) dMddMz VVGLS
~~~~ˆ ~~ ′′=β  

with variances given by  

(30) ( ) ( )22ˆ dMddMMzVar VVVOLS ′Ω′= σβ  

and  

(31) ( ) dMdVar VGLS
~~ˆ ~

2 ′= σβ  

Note that these expressions employ the ~-transformation introduced in section 3. To 
evaluate these expressions thus requires knowledge of the covariance matrix Ω . In 
the case where tttu εω += this matrix turns out to be  

(32) ( )JI νσ ε +=Ω 2  

where the matrix J , derived from the random walk component in tu , is  

(33) 























=

T

J

..321
:::::
3..321
2..221
1..111
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and 22 / εη σσν =  is the variance of the tη  process relative to that of tε . This quantity 

will be important in what follows. In the composite process tttu εω +=  we refer to tη  
as a permanent shock and to tε as a transient shock: the point is that, from period to 
period, tη  permanently alters the value of tu whereas tε disappears and is replaced 
by its next value. Thus ν is the variance of the transient component of tu  relative to 
the permanent component. This needs to be calculated to perform GLS—it is needed 
to evaluate Ω —and we shall turn to this below. For the present, note that ν will 
determine the relative efficiency of GLS to OLS. If ν = 0, then OLS and GLS are the 
same so the relative efficiency is unity. When ν > 0 there are gains to GLS. Assume 
we estimate in 15 years of annual data and that td is a countermeasure dummy 
taking effect over the last five years. Figure 4 gives the relative efficiency of OLS and 
GLS as a function of ν , calculated from (30) and (31). Small values of ν lead only to 
small efficiency gains, but once ν is 0.25, GLS offers efficiency gains of about 10%; 
for ν around 0.5, GLS is about 25% better than OLS.  

GLS when there are many regions: the panel estimator  

These results have been derived for the data from a single site. We now demonstrate 
how to extend GLS to the case where there are many sites Ni ,...,1= . We assume 
the data in each region have been adjusted by the ~-transformation and normalise all 
data by the scale parameter iσ , which we allow to vary across regions. We write the 
complete model in matrix form  

(34) 


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
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The stacked column vector on the left is 1×NT ; the first square matrix on the right is 
NNT 2× and consists of the (adjusted) vector of constant and trend written down the 

diagonal (with zeroes elsewhere); the second column matrix on the right consists of 
the N2  parameters associated with the region-specific constant and trend; the 
second column vector is the stacked countermeasure variables; the final column 
vector is the stacked residual vectors. If it is assumed that the composite errors are 
uncorrelated at different sites7, the covariance matrix of this residual vector is the 

NTNT × identity matrix , NTI  . It follows that an OLS estimate of (34) is BLUE. One 
need not develop an estimate of β from (34) which would require a large matrix 
inversion): rather, one multiplies through by the projection matrix VM ~  to eliminate the 
first term on the right and calculates the estimate of the parameter of interest by a 
univariate regression. It turns out that the panel estimator is just a weighted average 
of the GLS estimates in each region  

(35) ∑=
i iipanelGLS w ββ ˆˆ

,  

1                                                 

7 Plausible if the control regions are well-chosen. 
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where ∑ ′




 ′=

j jjVjiiVii dMddMdw 2
~

2
~

~~~~
σσ .  

One might want to allow the Ω  matrix to vary over sites, if one believed that the 
relative variance ν  varied over sites. Little is changed. In equation (34), the 
V~ matrices now vary by site since the ~-transformation now varies by site. The 
estimator is given by a slightly modified version of (34) in which the V~ matrices are 
indexed by i .  

Below we report our experience with this estimator. It can be achieved by a 
sequence of simple data transformations. One begins with the primary equation (5). 
We assume the error variances 2

iσ are proportional to ( ).. 11 ii PP ′+  (where .iP etc. 
denotes the average of itP  over time) and weight the variables by the factor iσ1 . 
The variables are then adjusted by the ~-transformation and the transformed 
constant and trend removed from the policy variable by regression . The final 
parameter estimate is then obtained by a simple univariate OLS regression.  

CONSISTENCY ISSUES 
The property of consistency of estimators, namely that the estimate approaches the 
true value in probability as the sample size grows8, is desirable because it implies 
that, if the sample size is large, we can be confident that the estimate is close to the 
true value. It implies also that it is sensible to collect more data if greater precision is 
needed. In this section we shall consider consistency when the error process is a 
random walk.  

A single region  

Assume first that we study the data of a single region and that the model is given by  

(36) ttx ωβ +=  

where tω is the random walk given by (22) and β is an unknown parameter which we 

want to estimate. In these circumstances the OLS estimator is just the sample mean,  

(37) Tt TT
T

T
Tx ηηηβ

1...21
21 ++

−
+

−
++=  

and the variance of the estimate about β  is  

(38) ( ) ( )( ) TTTxVar t 6121 ++=   

1                                                 

8 In the ensuing discussion it will be convenient to employ the slightly stronger concept of consistency 
that the variance of the estimate about the true value approach zero.  
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This grows monotonically with T . Thus, even though the estimator is unbiased, it 
grows increasingly diffuse as the sample size grows. In terms of efficiency, the best 
OLS estimator of β  is simply the first observation, 11 ηβ +=x . Clearly then, OLS is 
not a consistent estimator of β  in (36). In certain circumstances, OLS will be 
consistent when there are random walk errors. It can be shown that, in the model  

(39) ttt dx ωβ += , 

OLS will be consistent if the sum of squares dd ′ grows at a strictly faster rate than 
2T as T grows9. For the constant vector, dd ′ grows at a rate 2T and thus fails this 

test; the sum of squares of the trend vector, however, grows at 3T , implying that OLS 
will be consistent for a linear trend, even when the error is a random walk.  

In the case of GLS, the extended Gauss-Markov theorem implies that the variance of 
the GLS estimator is less than or equal to that of OLS, so that, whenever OLS is 
consistent, so too will be GLS (since both are unbiased and linear and GLS is BLUE). 
The theorem implies as well that the variance of GLS cannot increase as the sample 
grows (since the estimator over a subset of the sample is also linear and unbiased). 
In the case (36) where a simple constant is fitted, the GLS estimator turns out to 
have variance 2

ησ , which is independent of T . Thus, whereas the OLS estimator 
gets worse as the sample grows, GLS stays the same. Both, of course, are 
inconsistent. It can happen that OLS is not consistent but GLS is; an example is 

2
1

td t = , where the variance of OLS converges to a constant as T grows, while that 
of GLS converges to zero.  

We summarise the discussion so far. For a single region, when the error process is a 
random walk, GLS will be better than OLS but both may be inconsistent. GLS never 
gets worse as the sample size grows; OLS may. A sufficient condition for the 
consistency of both is that the sum of squares of the dependent variable grows 
strictly faster than 2T .  

Many regions  

When there are many regions, there are two dimensions to which consistency can 
apply, N and T . We consider what happens as N grows. Assume that, as N grows, 
each new region is an independent draw from a fixed distribution. According to (35), 
the GLS estimate is an average of GLS estimates in single regions. The same 
applies to OLS. Since both are unbiased estimators, an appeal to the law of large 
numbers delivers the consistency of both.  
Thus, when there are stochastic trends, increasing the number of regions N will 
always be a good idea, irrespective of estimation method. This is in contrast to 
increasing the number of time periods which, at worst, will not increase the variance 
of GLS, but which may well make OLS worse.  

1                                                 

9 The positive quantity Tf  grows strictly faster than Tg if 0→TT fg as T grows. 
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HOW IMPORTANT ARE STOCHASTIC TRENDS? 
We have argued that stochastic trends may more plausibly represent omitted 
demographics in studies of the effects of interventions, and shown how their 
presence modifies the estimators. We have shown that substantial gains in efficiency 
are on offer if the permanent shocks are reasonably large relative to the transient 
shocks (Figure 4). We now propose to investigate how large the permanent shocks 
are in real casualty data, specifically total casualty monthly data for the 505 
Queensland SLAs, from Jan. 1995 to Dec. 2001. The analysis is based on the first 
difference of monthly casualties. According to (24) this is, up to a constant,  

(40) ttttz ηεε +−=∆ −1
10 

Seasonal adjustment  

We wish to adjust (40) for seasonality. If seasonal effects are additive, this is done by 
subtracting the average of tz∆ for each month over the seven years of the sample11. 
Unfortunately, since we have so few years, this will change the variables on the right 
in (40). For example, tε is replaced by  

∑ +−
p ptt 7/12εε  

where the index p ranges over the years of the sample. It is simple to see that 
seasonal adjustment reduces variance by a factor of 42/49 = 0.857. This is equally 
true for tη and, since we are ultimately interested in the ratio of the variances of tε  
and tη , less harm is done than might be first thought. The serial correlation 
coefficients of the variables are unaffected except at lag 12, where the common 
seasonal adjustment will induce serial correlation, and lag 11, where the seasonal 
adjustment to tε is common to that of 1−tε  12 months later. These considerations will 
arise from time to time below so we shall highlight them.  

Seasonally adjusting tz∆  will  

■ reduce the variances of tε  and tη  by a factor of 0.857.  

■ leave the serial correlations of tz∆ , tε  and tη  unchanged except at lags 11 and 
12 (plus multiples of 12).  

The correlogram of tz∆   

The first natural port-of-call is the correlogram of tz∆ . The process given by (40) is a 
first-order moving average (MA(1)) whose first-order serial correlation is given by  

(41) ( ) ( ) ( )νσσσρ ηεε +−=+−=∆ 212 222
1 tz  

1                                                 

10 We assume the SafeST initiatives are unimportant at SLA level. 
11 Which will remove the omitted constant. 
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where ν is the variance of the permanent shock relative to that of the transient shock. 
All other serial correlations are zero.  
Figure 5 gives the average correlogram for the 505 SLAs. Standard errors for these 
correlations are of the order of 0.006. After the first correlation, all are less than one 
standard error from zero until the tenth, which is about three standard errors from 
zero. The correlations at lags 11 and 12 are marked, in accordance with the 
discussion above of seasonal-adjustment. This is about as perfect a correlogram of a 
seasonally-adjusted MA(1) as one could want. The (average) first-order correlation is 
estimated as –0.48864 with a sample standard error of 0.00408, which is about three 
standard errors from –0.5, the value that (41) would take if the permanent shocks 
were absent. This would imply a value for ν of about 0.04650, that is the permanent 
shock is about 5% of the transitory shock in monthly data. But the problem of bias 
arises.  
It is well known that estimates of the serial correlation coefficient are biased in small 
samples. To estimate the size of the bias in our context, we constructed 1000 
random versions of 1−− tt εε for our sample size and used our Box-Jenkins package 
(TSP 4.5) to estimate the first-order serial correlation. We found an average estimate 
of –0.48582 (standard error 0.00276). This average is smaller in magnitude than that 
found in the SLAs—and thus implies a higher value of ν —even though ν is zero by 
construction in these data. This implies that we cannot base a reliable estimate of 
ν on the first-order serial correlation.  

Differencing at different horizons  

An alternative approach is to study the effects of differencing at different horizons. 
Define  

(42) ,...2,1=−=∆ − kzzz ktttk  

Then it is easy to see that  

(43) ( ) 222 ηε σσ kzVar tk +=∆  

so that  

(44) 
( )
( ) ( )1

12
1

1

−
+

+=
∆
∆ k

zVar
zVar

t

tk

ν
ν

 

The LHS is easily calculated from observed data; an estimate of ( )12 +νν  can be 
obtained from a regression of the LHS on 1−k  and the corresponding value of ν  
thus inferred. Seasonal-adjustment does not distort this estimate because (44) is 
essentially a ratio of variances and numerator and denominator are changed by the 
same factor. Problems arise at k = 11 and 12, however, because of seasonal-
adjustment. In particular, at k = 12, the whole of the variance-reducing distortion is 
removed and we expect a jump of about 17% at that value of k—as is, in fact, 
observed. Figure 6 shows the SLA average relative variance for the first 10 values of 
k. The clear increasing trend is strikingly in accord with the theory developed above. 
Fitting a linear trend through these data (constrained to pass through (1, 1)) gives a 
quite precisely estimated slope parameter of 0.003488 (standard error = 0.00048). 
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This implies an average value for ν of 0.007, that is, the permanent shock is about 
0.7% of the transient shock in monthly data.  
This number may seem small at first sight, but this would be a false impression as 
the shock is permanent. Assume we work with annualised data. Then the annual 
transient shock has 12 times the variance of the monthly transient shock. The 
permanent shock in annual data is  

( ) ( ) 12211221211 ...1112...... ηηηηηηηηη +++=+++++++   

which has variance 2650 ησ . Thus ν in annual data is 650/12 = 54.1 times as great as 
in monthly data: factoring up the monthly estimate gives an annual ν of 0.38. 
Referring to Figure 4, one sees that OLS will be about 80% as efficient as GLS.  

Practical problems of estimating the relative variance  

We have calculated the slope of the regression (44) from the average SLA values of 
the RHS. Equally, this could be calculated by performing the regression at each SLA 
and averaging the resulting parameters. This is a useful way of thinking about it 
because, in some cases, one will have only a few sites, perhaps not SLAs, and will 
need to estimate values for ν . It turns out that the standard deviation of the slope 
estimates over sites is very large relative to the mean—over eight times as large. 
Thus one will be nearly as likely, in a single SLA, to find a negative ν as a positive 
one. How one proceeds in these circumstances deserves consideration. Bayesian 
methods are attractive.  

SUMMARY  
We have argued that unobserved demographics will be better modelled by stochastic 
trends, as these allow for the demographic effect to wander away from a linear trend 
if this improves the fit. We have shown how the model can be estimated by GLS in 
these circumstances and have demonstrated that considerable efficiency gains can 
result if the error process driving the stochastic trend is large enough in variance 
relative to the equation error. We have studied casualty data for the 505 Queensland 
SLAs, 1995 to 2001, and have estimated the relative variance to be of the order of 
0.38 on average in annual data, implying that, in annual data, OLS estimates will be 
about 80% as efficient as the proposed GLS.  
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Source: QT crash data.  

Figure 1  Pedestrian casualties at treated and control sites 
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 Source: ARRB TR calculations. Note: None significant at the 5% level. 

Figure 2   95% confidence intervals for countermeasure effects 
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Figure 3  Simulated 95% confidence intervals for countermeasure effects 
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Figure 4   Relative efficiency of OLS and GLS against  
relative weight of permanent and transitory shocks 
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Figure 5    Correlogram of monthly changes in casualties: average of 505 SLAs 
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Figure 6   Effect of differencing horizon on variance of change in casualties 
 


