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1. INTRODUCTION 
 
Considerable amount of research efforts has been dedicated to conceive forecasting 
models for predicting urban development and travel demand. Mainly originated from 
the application of economic theory, urban development models were initially 
conceived to explain the configuration and evolution of urban structures (Chapin, 
1957). According to Ross (1988), these models are used to predict how future 
activities will be allocated, assuming that the land uses are determined by the 
location, the availability of services and proximity to other types of land uses. Based 
on these pioneer initiatives, Wegener (2003) identified and analyzed 20 integrated 
land use-transport models, which incorporated the most important spatial processes 
of development in conjunction with travel demand forecasting. Most part of them 
predicts land use separately to travel demand forecasting, i.e. each element (land 
use or transport) is modeled independently using its outputs for subsequent steps of 
the modelling process. Traditionally, planners have used these models to estimate 
future land use patterns and from them travel demand is estimated (Miller and 
Demestky, 1999), which is subsequently used to estimate traffic flows, congestion 
and pollution.  
 
Nevertheless, travel demand models have been criticized due to the massive and 
costly data requirements for application to real problems (Harris, 1996), and due to 
the non-incorporation of temporal dynamic and realistic dimensions of urban reality 
(Rodrigue, 1997). Wegener (2003) points the travel demand models are still based 
on the traditional four-step approach, which ignores new techniques available in this 
information technology era. Many alternative approaches have been proposed. Some 
have argued that efforts should center on dynamic models, which should 
simultaneously consider land use and transport system interactions as part of the 
travel demand forecasting process (Handy, 1996). On the other hand, it is observed 
a growing concern over the need to incorporate the temporal dimension as part of 
travel demand modelling (Nihan and Holmesland, 1980). Ortuzar and Willumsen 
(1994) indicated that models should use temporal data series in order to better 
express the urban dynamic and its impacts on the transportation system demand. 
 
In this paper, we present a Neural-Geo-Temporal Model (NGTM) that incorporates 
temporal interactions between transportation systems and land use patterns as the 
fundamental elements to express urban dynamics and its effects on travel demand. 
NGTM intends to reach an efficient representation of geographic, evolutionary and 
non-linear characteristics of urban interactions, without incurring on additional costs 
(data collection, processing time, personnel). NGTM combines Neural Networks (NN), 
which allows the creation of a mathematical model without considering a priori 
relations between dependent and independent variables, and Geographical 
Information System (GIS), which contributes on conducting spatial analysis that 
generate data/information on the evolution and characteristics of the urban area.  
 
This paper is divided into five sections. After this brief introduction, we present a brief 
review on NN fundamentals, which is followed by the theoretical conception of the 
NGTM, the case study and the conclusions.  
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2. NEURAL NETWORKS  
 
This section presents a brief review on the NN fundamentals, which understanding 
will be essential for the conception of the NGTM in the section 3.  
 
Fischer (1998) has indicated that NN may be viewed as generalized non-linear 
extensions of conventional spatial statistical models (regression models, spatial 
interaction models, linear discriminant functions, etc.). The main consequence of the 
“generalized non-linear” capability is that a mathematical model can be reached 
without a priori assumptions regarding the interfering variables and their 
interrelationships. 
 
Similar to traditional statistics modelling, NN is dedicated to obtain or compute a 
function that expresses the correlation between a set of independent (X) and 
dependent (Y) variables. Based on examples related to these variables, which are 
respectively incorporated into X

r
 and Y

r
 vectors, the obtained function is expected to 

produce results (Ŷ ) similar to those observed in the samples. Despite the similarities, 
the whole process of computing the modelling function is totally different in its 
principles and procedures. 
 
NN modelling consists on three main steps. Firstly, the architecture of the NN 
representing the relation between independent and dependent variables is selected 
and constructed. Next, NN parameters of the modelling function are obtained through 
a training process, which some scholars also call learning. Finally, the validity and 
efficiency of the modelling function is analysed based upon testing procedures 
(Fischer, 1998).  
 
In order to conduct NN modelling, some assumptions have been adopted on 
developing an analogy of human brain processing even acknowledging its limitations. 
According to Fausett (1994), NN have been developed based upon the following 
assumptions: 
- Information processing occurs at many simply elements called neurons; 
- Signals (or sample value) are passed between neurons over connections links; 
- Each connection link has an associated weight, which, in a typical NN, multiplies 

the signal transmitted; and 
- Each neuron applies an activation function (usually non-linear) to its net input 

(sum of weighted input X
r

 signals) to determine its output Y
r

signals.  
 
In these assumptions, terms such as neurons, links, weight and activation function 
were introduced as part of the analogy to human brain processing that have now to 
be clarified in the NN context. In this sense, we make use of Haykin’s (1994) 
description as following: 
- A neuron is an information-processing unit that is fundamental to the operation of 

a NN. Figure 1 shows the model for a neuron, which is composed by three main 
elements (connecting links, adder, activation function); 

- Each of which connecting links are characterized by a weight (or strength). 
Specifically, a signal xj at the input of j connected to neuron k is multiplied by the 
link weight wkj; 

- Adder processes the summing of input signals, weighted by the respective links 
of the neuron, which results in the uk value, which is obtained by applying the 
equation 1 
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uk = ∑
=

p

j 1
wkjxj 

where p is the total number of links connected to neuron k; and 
- Activation function ϕ (.) limits the amplitude of the output yk of a neuron equation 

within pre-established intervals such as [0, 1] and [-1, 1] as shown in equations 2 
and 3: 

yk= ϕ(uk) 

 
 
 
where α is the slope parameter of the sigmoid function (α=∞), which is the most 
common form of activation used in NN. 

 
 
The learning process takes place in order to reach the compute of all link weights wkj; 
which form a set W. Training is accomplished by sequentially applying input vector 
X
r

, while adjusting network weights W according to a predetermined algorithm, 
which is a prescribed set of well-defined rules. The most common approach for 
conducting the learning processing is the Supervised training, which is performed 
while the network “learns” to associate each input vector X to its corresponding 
output vector Y (back-propagation algorithm). In a typical supervised training, 
network weights are gradually adjusted in order to converge to values such that each 
input vector produces the desired output vector Y

r
 (Wasserman, 1989). This is 

reached by the minimization of the following equation: 
 
 
 
where ε (q) is total error for the qth iteration, computing the differences between the 
desired output (yj) and the calculated by NN ( ŷ j(q)) for all j neuron outputs, which is 
subjected to  
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Figure 1: Non-linear model of a neuron 
Source: adapted from Haykin (1994) 
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where εm is the fixed error margin to be reached on adjusting the weights W. 
 
Finally, once training is reached, one has to be concerned on the evaluation of NN 
modelling function. It is expected that this function is provides “generalization” on 
dealing with samples that have not been employed in the training process. In this 
sense, it is usual to conduct a testing phase that indicates if previous definitions 
(intervening variables X and Y, activation functions; architecture; and training 
algorithm) were correctly established or if they require a re-evaluation in order 
improve the efficiency of the NN. In this sense, Teodorovic and Vukadinovic (1998) 
points out that it is important to select part of the samples related to vectors X and Y 
in order to use them on testing tasks, which are usually separated into two-thirds for 
training and one-third for testing. Then, using testing vectors, the modelling function 
is applied and the efficiency of the NN can be considered.  
 
3. THEORETICAL CONCEPTION OF NGTM 
 
The description of the NGTM is presented in three steps: basic principles; 
mathematical formulation; and RN formulation as follows.  
 
3.1. BASIC PRINCIPLES OF NGTM FOR TRAVEL DEMAND MODELLING TRIP 
GENERATION MODELLING 
 
The first principle is: Trip Generation (TG) can be expressed as a parallel system 
formed by Urban Interactions (UI), which is the result of the interactions between 
Land Use patterns (LU) and the Transportation System (TS), Spatial Location (SL) 
and Population (PO) as shown in the Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
The second principle is: trip generation is the result of temporal interactions, which 
can also expressed using a parallel system. Figure 3 presents the representation of 
the temporal parallel system in which TS(t), PO(t), LU(t), SL(t), UI(t) and TG(t) are 
observed for each time z. 
 
The third principle is: trip generation is the result of recursive interactions between the 
parallel system’s elements. TG for any future time stage (t=z+1) will depend not only 
on present conditions but also on all previous time stages {1,2,...,z} as shown in 
Figure 4. 
 
 
 

Figure 2:  Trip generation as a parallel system  

TS

UI TG 

SL 

LU PO 
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3.2. MATHEMATICAL FORMAULATION OF THE NGTM FOR TRIP GENERATION 
MODELLING 
 
Consider an urban area, which is divided in z zones. For any zone i and time stage z, 
urban interactions are expressed as shown in the equation 6.  













=
→→→→→

z
i

z
i

z
i

z
i

z
i POSLLUTSUI ,,,

 

where  
z

iTS
→

 is the vector containing transportation system features of zone i at a given time 

z; 
z

iLU
→

 is the vector representing land use charactheristics of zone i at a given time z; 

z
iSL

→

 is the vector for describing spatial location of zone i at a given time z; 

z
iPO

→

is the vector with population information of zone i at a given point z of time; 

 
From Equation 6, these interactions for a temporal perspective are represented as 
follows:  













=
→→→→→

n
i

z
iii

n
i UIUIUIUIIT ,...,,...,2,1  

where  
n is the total number of time stages along the observation time period; and 

(6) 

S
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Figure 3: Temporal Parallel system for Trip Generation Modelling  
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Figure 4: Future trip generation as a recursive process 

TG(1) TG(2) 
TG(3) TG(z) TG(z+1) TG(n) TG(n+1) 

UI(1) UI(2) UI(z) UI(n) 

(7) 



Analysis of the Evolution of Travel Demand in Urban Areas: A Neural-Geo-Temporal Modelling Approach 
A Dantas, T Tamashita, MV Lamar 

Page 6 

n
iIT

→
 is the set of interactions for n time periods for the ith zone.  

At same time, z
iTG  is the trip generation at zone i and time z are observed as a travel 

demand-indicator for ith zone. Analogously to Equation 7, it is established  













=
→

n
i

z
iii

n
i TGTGTGTGGT ,...,,...,2,1  

where  
n

iGT
→

 is the set of trip generation for n time stages for the ith zone. 

 

Once the definition of land use-transportation interactions and travel demand 
indicator are reached, we concentrate now on the establishment of the forecasting 
paradigm. For each stage of time z, travel demand for a future scenario (t+1) can be 
obtained from incorporation of previous interactions (Equation 7) and demand 
(Equation 8) into NGTM as shown in the equation 9. 
















=

→→

+ n
i

n
i

n
i ITGTTG f ,1  

where  
f  is a function that establishes the relationships between the independent (TGi

n+1) 
and dependent variables (GTi

n+1 and ITi
n+1). 

 

3.3. NN FORMULATION 
 

In a NGTM, we apply NN to determine function f  throughout a non-linear and 
recursive approach. This function represents the weight set W that establishes the 
relationships between input, hidden and output neurons of a NN as previously 
explained in the section 2. To conduct this calculation, firstly a NN architecture 
dedicated to efficiently process time-depending input vectors has to be defined. 
Derived from a Multi-Layer Perceptron (MLP) NN, Elman network is selected due to 
its simplicity of conception and because there is no need to develop sophisticated 
and complex training algorithms than the simple back-propagation (Elman, 1990; 
Haykin, 1994). Figure 5 illustrates the Elman NN for the NGTM.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Application of an Elman NN for NGTM 
Adapted from Elman (1990) 
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For the selected network architecture, the composition of input iX
r

 and output iY
r

 
vectors is described in Equations 10 and 11, respectively. 

 

 

 

4. CASE STUDY 
 
Nagoya City is the fourth largest Japanese City. Located in Chubu (central) region, 
its current population is estimated on approximately 2.2 million people (1998) and it 
occupies 326.35 Km2. Nagoya City is currently supported by massive production of 
automobile industries in its surroundings. Nevertheless, commercial and service 
activities are highly concentrated in the Central Ward (Naka-Ku) that comprehends 
Nagoya Station and Sakae. 
 

In Nagoya City, one of the current challenges of urban planners has been the 
establishment of urban policies to control agglomeration of activities, which generate 
high levels of traffic flows in central and surrounding areas (Osukanon and Nagoya 
station). Actions have been taken in order to induct urban development in areas such 
as Kanayama, Ozone and Imaike. They have promoted new sub-centers that have 
concentrated many types of daily activities. However, agglomeration in central areas 
has remained high as well as congestion and pollution. Therefore, information on 
how these agglomerations have contributed for changes on person trip attraction, as 
well as how temporal evolution of urban conditions have affected the urban dynamics 
has to be obtained (CPB, 1997). 
 

The description of the case study is divided into four sub-sections.  
 

4.1. GIS DATABASE 
 

Using 248 traffic zones (TZ), digital maps of the transportation system (bus, train, 
subway, road and Nagoya Highway - NH), land use information (commercial and 
parking area) and demographic (population) data, a GIS database as shown in 
Figure 6 was created.  
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Figure 6: Temporal GIS database 
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This database is the result of multiple efforts to gather together data from three 
different sources at three different years (1971, 1981 and 1991). Land use, 
transportation system and demographic data were obtained from Nagoya Urban 
Institute (NUI), while person trip data (number of trips per zone in the peak-hour) was 
acquired from Nagoya’s Road Planning Section and digital map data was purchased 
from a private company. In the construction of the GIS database, a time-base 
representation of spatial-temporal data was employed, since it is intended to evaluate 
dynamic changes over the years, considering the traffic zones as the main element 
of comparison (Peuquet, 1999). In this sense, for each time-state (1971, 1981, 1991), 
geographical maps were created containing their respective spatial objects.  
 
4.2. TEMPORAL EVOLUTION OF THE URBAN AREA AND THE TRAVEL 
DEMAND 
 
Based on the GIS database, we firstly identified 61 patterns of temporal changes on 
zone’s characteristics in the 1971-1991 period. Table 1 summarizes the main 
patterns, which excludes the patterns that were not observed in more than 5 zones. 
From the Table 1, it is verified that Pattern 1 occurred in 57 zones, which represents 
approximately 23% of the total of zones. The Pattern 1 consists on population 
reduction in the 1981-1991 period (PO1981>PO1991). On the other hand, in the Pattern 
13 population increase in the 1981-1991 period (PO1991>PO1981) accounting for 16% 
of the cases is observed. In addition to these cases shown in the Table 1, a large 
variety of patterns are observed due to the combination of changes on LU, TS and 
PO. 
 
Patterns of changes on trip attraction were also identified. Table 2 presents four 
patterns of changes, their description and number of observed cases. It is clearly 
verified that Pattern 3 is predominant, which means that trip attraction has increased 
in the 1971-1981 period (A1981>A1971) and decreased in the 1981-1991 period 
(A1981>A1991).  
 

Table 1 – The main patterns of temporal changes on zone’s characteristics 

 
 

Table 2 – The main patterns of temporal changes on trip attraction 
 

 
 
 
 
 

Pattern No. Pattern Description No. CasesNo.Cases%
1 PO 1971 =PO 1981PO 1981 >PO 1991 57 22.98%
13 PO 1971 =PO 1981PO 1991 >PO 1981 40 16.13%
11 PO 1971 =PO 1981PO 1981 >PO 1991 PT 1971 <PT 1981 PT 1981 =PT 1991 12 4.84%
3 PO 1971 =PO 1981PO 1981 >PO 1991 PT 1971 =PT 1981 PT 1981 <PT 1991 10 4.03%
21 PO 1971 =PO 1981PO 1981 >PO 1991 RL 1971 <RL 1981 RL 1981 =RL 1991 8 3.23%
14 PO 1971 =PO 1981PO 1991 >PO 1981 PT 1971 <PO 1981 PT 1981 =PT 1991 7 2.82%
41 PO 1971 =PO 1981PO 1991 >PO 1981 RL 1971 <RL 1981 RL 1981 =RL 1991 7 2.82%
6 PO 1971 =PO 1981PO 1981 >PO 1991 PT 1971 =PT 1981 PT 1981 <PT 1991RL 1971= RL 1981RL 1981 <RL 1991 7 2.82%
9 PO 1971 =PO 1981PO 1981 >PO 1991 PT 1971 <PT 1981 PT 1981 <PT 1991 7 2.82%
22 PO 1971 =PO 1981PO 1981 >PO 1991 RL 1971 =RL 1981 RL 1981 <RL 1991 7 2.82%

others 86 34.68%

Pattern No. Pattern  Description No.Cases No.Cases%
3 A 1971 <A 1981 A 1981 >A 1991 155 62.50%
1 A 1971 >A 1981 A 1981 >A 1991 59 23.79%
4 A 1971 <A 1981 A 1981 <A 1991 21 8.47%
2 A 1971 >A 1981 A 1981 <A 1991 13 5.24%
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Taking into consideration the patterns presented on the Tables 1 and 2 as well as the 
spatial distribution of them as shown in the Figures 7 and 8, it can be preliminarily 
concluded that no general rule that explains changes in trip patterns based on 
changes on zones’ characteristics.  
 

 

 
 

Figure 7: Spatial distribution of the main change patterns –Zones’ characteristics 

Figure 8: Spatial distribution of the main change patterns – Trip Attraction 
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4.3. APPLICATION OF THE NGTM FOR TRIP ATTRACTION MODELLING 
 
Acknowledging the complexity of these temporal changes, NGTM was applied to 

establish the modelling of this phenomenon. Based on the GIS database, all the 

elements of the vectors n
iUI

→

 and n
iGT

→

were specified as shown in the following 

equations: 

{ }z
i

z
i

z
i

z
i NHRTPTTS ,,=

→

 

{ }z
i

z
i

z
i RLPLCLz

iLU ,,=
→

 

{ }z
i

z
i HDSDz

iSL ,=
→

 

{ }199119811971 ,, iii AAAz
iGT =

→

 

where 
z

iPT  is the total extension (Km) of public transportation for zone i at a given time z; 
z

iRT  is the total extension (Km) of road transportation for zone i at a given time z; 
and 

z
iNH  expresses the existence or not of Nagoya Highway’s ramp for zone i at a given 

time z; 
z
iCL  is the occupied area (m2) of commercial pattern for zone i at a given time z; 
z
iPL  is the occupied area (m2) of parking pattern for zone i at a given time z; and 
z
iRL  expresses the regulation or not of zone i at a given time z. This regulation 

expresses an intervention by Nagoya’ planning section that intended to establish a 
reticulated structure of the road system. 

iSD  is the distance in kilometers from zone i to Sakae’s TV Tower that is main 
reference located in downtown; and 

iHD  expresses the distance (Km) from zone i to Nagoya Interchange of Tokyo-
Nagoya highway were defined to represent spatial location, 

z
iPO

→

 is defined as the number of inhabitants in the zone i at a given time z.  
1971
iA , 1981

iA  and 1991
iA  are the trip attraction indicators expressed in number of trips 

attracted to the i during the peak hour (5:30 – 6:30 PM) for a given time 1971, 1981 
and 1991. 
 
The NGTM for trip attraction modelling was implemented in C++ language as 
independent module of GeoConcept, which was the GIS software used in this study. 
In this module, pre-processing, vectors separation, training and testing were 
conducted. The pre-processing consisted on the normalization of all the values of all 
variables within a 0.1-0.9 range. The data set was then randomly divided into two 
sets of training ( X ′

r
and Y ′

r
) and testing ( X ′′

r
and Y ′′

r
) according to a 75% (186 

zones-vectors) and 25% (62 zones-vectors) distribution, respectively.  
 
Finally, the training and testing of the Elman NN was conducted. We applied the 
back-propagation algorithm with a learning rate of 0.01 and using sigmoid activation 
functions. The NN was trained until the Minimum Square Error (MSE) was reached   

(12) 

(13) 

(14) 

(15) 
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(MSE=0.000229), i.e., after 36677 iterations. Using the trained network, trip 
generation in 1991 were estimated for the testing data set (Y ′′

r
) as shown in the 

Figure 9.  The average error was 87.11 trips; the standard deviation was 128.35; and 
the average relative error was 23.58%.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Comparison between the observed and estimated results for the testing 
data set 

 
4.4. ANALYSIS OF THE RESULTS 
 
Analyzing the Figure 9, it is verified that the modelling function generated by the 
NGTM provides estimated results, which are very close to the observed trip attraction 
in 1991. Despite the variation in the number of trips on the testing data set  
( 37731991

max
=A  and 561991

min
=A ) the NGTM was capable of “understanding” the travel 

patterns observed over time.  
 
For example, the zone 610, which had the testing vector with the greatest number of 
trips (3373), presented the second smallest relative error (-0.6%). This zone had a 
considerable increase on trip number in the 1971-1981 period, while in the 1981-
1991 period the trip attraction was reduced (Pattern 3 – Table 2). This zone had also 
increase on transportation infrastructure and commercial area (Pattern 29 – Table 1 
as part of “others”). This complex development pattern was fully incorporated into the 
temporal modelling and consequently NGTM was capable of predicting correctly trips 
in 1991. 
 
Nevertheless, it is observed that in some cases the NGTM was efficient as expected. 
For instance, the complexity of the changes in zones 1511 (Hoshigaoka) and 1415 
(Hirate), which presented relative errors of 106 and 50%, respectively, were not 
completely assimilated in the NGTM modelling function. Zone 1511 had population 
increase (21% in the 1971-1991 period), but the trip attraction reduced 10% since 
1981 (A1971=52, A1981=126, A1991=113). Therefore, the NGTM overestimated the trip 
attraction. On the other hand, zone 1415 experienced a 624% growth on demand in 
the 1971-1991 period and also increase on population numbers and commercial 
area. NGTM overestimated A1991. 
 
Still about the results presented in the Figure 9, it can be concluded that there is not 
a direct relation between the number of trips and the relative error. Despite of 
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verifying relative errors greater than 20% in some cases with zones related to low A 
(A1022=56, A406=81, A1018=98 e A1511=113), in other cases (A806=210, A1118=168 e 
A1310=230) relative errors lower than 20% were also observed. 
 
Focusing on the spatial distribution of the relative errors per zone, it is verified that 
they are not related to a specific area of the city. In the Figure 10, it is noted that the 
relative errors are divided into 10 groups, which are randomly sprawled all over the 
urban area. This conclusion is particularly important for validating the model, 
especially for the zones in the urban area fridges. It can be concluded that the MNGT 
has no problems on generalizing the estimation of trip attracion independently of the 
spatial location. 

 
Figure 10: Spatial distribution of the relative error per zone 

 
5. CONCLUSION 
 
In this paper, a research effort to develop a NGTM for trip generation modelling was 
described. Combining NN and GIS technologies, this work intended to overcome 
limitations on the development of urban models for travel demand analysis. NGTM is 
a tentative to conceive models in a different way, i.e., adaptation of models to 
express urban reality, not the opposite. In this direction, innovative features of NGTM 
focused on establishing a non-linear, parallel system and recursive approach, which 
provided a spatial-temporal representation of urban interactions. This approach is 
considered essential for the obtainment of useful information related to urban 
developments and their effects on travel demand, which has been conducted in a 
static fashion and very limited in terms of the representation of urban dynamics.  
 
The application of NGTM for conducting trip attraction modelling in a case study has 
shown its efficiency. The NN modelling function correctly calculated trip attraction for 
most part of the traffic zones of Nagoya City. Despite of few exceptions, it was 
capable to process a very complex situation of urban development as observed in 
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Nagoya City, which has presented different patterns of changes all over the urban 
area.  
 
However, in a critical analysis, two main restrictions on employing NGTM are 
observed. The first one refers to NN formulation and the relationships between the 
independent variables that cannot be deeply understood. As NN establishes non-
linear relationships and processing functions, it becomes a hard task to formulate a 
simple comprehension on the obtained weights W. In an opposite direction, linear 
modelling is rather simple on its understanding, since the number and the relations of 
function parameters are limited. Therefore, until scholars develop a form to reach 
some comprehension on the weights generated by NN modelling, the combination of 
both techniques would be an alternative way. Combination in the sense that after 
processing reaching a NGTM, planners should also verify linear relationships 
between the variables. In this sense, correlation analysis has much to contribute on 
exploring relationships between intervening variables. For example, the linear 
modelling of trip attraction in Nagoya City has shown that public transportation, road 
transportation and commercial land use have a considerable influence and 
correlation with zonal trip ends. Obviously, correlation analysis will not explain the 
whole nature of the process but at least they can provide additional information that 
is much more difficult to be obtained from the analysis of NN weights.  
 
The second restriction is related to the practical issue of obtaining data for NGTM’s 
simulations. In the information age, one would expect to face data-rich environment 
for conducting temporal analysis. However, it was remarkable the lack of a central 
geo-temporal database controlled by planning agencies in Nagoya City, which 
unfortunately is not a rare case. Many reasons could be argued here in order to 
justify or understand this situation, but the fact is that modelling advances are mostly 
likely not to appear until this is changed. 
 
In future developments of this research, efforts could be concentrated in four main 
aspects. Firstly, alternative data sources such as Remote Sensing (satellite images 
and aerial photographs) should be considered and studied. Secondly, fuzzy theory 
could be applied to the classification of zonal trip ends (travel demand) into levels of 
attractiveness (low, medium, high, etc). Next, NGTM conception should be adapted 
in order to process the analysis of trip generation and distribution. Finally, evaluation 
of metropolitan effects in the trip attraction modelling should be conducted since due 
to data limitation only intra-urban trips were considered in this study.  
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