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I ntroduction

The Austroads (1997) publication provides a useful benchmark to the evaluate nominal
safe cornering speed for a particular curve. The same specifically provides a safe design
procedure for road curvature design and predicts benchmark cornering speeds for curve
signage purposes. However this procedures, due to its application as a design
recommendation, doesn’t examine typical actual cornering speeds which professional
heavy vehicle drivers safely negotiate a given curve.

The characteristics of a professional heavy vehicle driver are:

Consistently fully utilize the available lane space through the curve

effect set up for the curve a considerable distance from curve' s apex and typically
prior to the curve's entry transition point

gradually apply increasing cornering lock (subject to steering system stability,
dead spots, slack, state of repair and stiction and vehicle understeer and oversteer
characteristics)

familiar with the curve and particular road camber and the optimal line through
each route curve

familiar with the actual lane width and pavement infill at the curve' s apex
very familiar with the road surface and road conditions.

The ability to negotiate corners at speeds in excess of the curve’s nominal safe road speed
becomes second nature as aresult of substantial driving experience and continuous on the
job practice with a particular vehicle and with each specific curve.

To explain the seemingly excessive cornering speed which professional drivers safety
negotiate a particular curve, especialy should the curve attract a signed advisory speed,
analysis techniques outside the scope of the Austroads design manua must be resorted to.
In simple terms the Austroads manual predicts that professiona drivers should invariably
experience loss of control on each and every curve attracting a speed advisory sign.

This paper presents one contributing factor for this seemingly contradiction. This
contributing factor will be identified by the following sequential analysis. This analysis,
for a particular corner of constant mid lane radius connecting directly two straight road
sections void of transition curves, will include:

1) No lane movement with the curve negotiated via a path of constant curvature or
radius (Austroads 1997),

2) Effect lane movement subject to the available lane space and negotiate the curve
via a path of constant curvature. For this case a sengitivity analysis will examine
the effect of a driver initiating cornering a +/-, 0, 1, 3, 6, 9, 12, 15 from the
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curve's entry inflection point. Here a positive sign is used to indicate
commencement of cornering after the curve’'s entry geometrical transition point,
whereas, the negative sign indicates early set up. It should be noted that fitting of
constant radius turns from the start positions in excess of approximately 3 m early
lack physical significance.

3) Effect lane movement subject to the available lane space and negotiate the curve
along a Fresnel function or symmetrical Cornu spiral. Here a optimal spiral and a
spiral satisfying the given curve's specific geometric boundary conditions will be
examined.

Driver control and road safety implications of the various analysis predictions will then
be discussed.

Austroads (1997) Constant M ean Radius Approach

As a vehicle traverses a circular curve, it is subject to a centripetal force which must be
sufficient to balance the inertial forces associated with the circular path. For a given
radius and speed, a set force is required to maintain the vehicle in this path and, in road
design, thisis provided by side friction developed between the tyre and pavement and by
superelevation.

For normal values of superelevation, the following formulais accepted :
E +f=V/gR or V?/127R 1)

where

E = Pavement superelevation (m/m or tangent of angle) This is taker

as positive if the pavement falls towards the center of the curve.

f = Coefficient of side frictional force developed between vehicle
and tyres and the road pavement. This is taken as positive if the
frictional force on the vehicle acts towards the center of the
curve.

= Acceleration due to gravity = 9.81 ms™

= Speed of vehicle (m/s)
Speed of vehicle (km/h)
= Curve radius or radius of curvature (m)

I < < @
I

Curves are generadly designed, so that a positive f is required for the range of vehicle
speeds likely to occur.

Lane Movement and Constant Radius Paths

The fitting of a constant radius bend to an approach and exiting straight road sections,
void of transition curve sections, involves major discontinuity of the path curvature,
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hence radius of curvature, particularly at both the entry and exit transition points. At the
points of curvature discontinuity the vehicle theoretically is subject to infinite jerk. The
occurrence of large magnitude jerk mars the stability and opportunity to maintain the
desired path and so increases the risk of loss of control. A constant radius bend does,
however, attract ssmple geometry and the shortest path through a curve. The same implies
the path distance from the entry transition point to the curve’'s apex is a minimum. A
further advantage of fitting a constant radius path through a curve is that the curve fit
parameters can readily be determined using simple geometry and be effected
conveniently using spreadsheet goal seek functions. This constant radius path geometry
can be readily effected for both constant lane clearance and maximal nominal lane
movement.

Typically found heavy vehicle drivers will exploit the available lane space by moving out
prior to entering the curve and then move across the lane to position the vehicle close in
at or near the curve's apex. This cutting in of the curve may extend to the rear most
inside trailer tyre overhanging the pavement at the curve’'s apex or utilizing pavement
infill should such exist.

Fresnel Function Path

In comparison a Fresnel path through a curve can be selected to satisfy the specific
curve's geometric boundary conditions and most strategically maintain continuity of the
curvature, hence radius of curvature, along the path. The continuity in the curvature
through the curve implies, most importantly, finite jerk applies whilst negotiating the
curve. In this investigation symmetrical Fresnel curves will be assumed. This implies
the path on the entry side of the curve is identical to that on the exit side with a
theoretical line of symmetry passing through the curve’s apex and instantaneous center of
curvature. Hence the distinct advantage of a Fresnel path through a curve is that the path
is the smoothest path. This path, in this smplified analysis, from the entry transition
point to the vehicle' s position at the curve' s apex.

A particular difficulty of analytically fitting a Fresnel path through any genera road
curve, from a given transition point to the curve's apex, is that the analysis is complex
and numerically demanding (Bower (1994)). This complexity is eased somewhat for
fitting a Fresnel path between a straight line and a given circle and between two straight
lines (Meek and Walton 1989).

The Fresnel Function
Spackman & Tan (1993) define the Fresnel integral or Cornu Spira as follows;

X = integral (cos(0.5 p V), O,u) @
y =integra (sin(0.5 p v?),0,u) ©)
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The Cornu spiral can easily be evaluated and plotted using spreadsheet packages. One
simply needs to evaluate the following tabular information in succession. Namely run v
in desired increments, then evaluate 0.5 pV?, then evaluate cos (0.5 pv?) then integrate,
using say Simpson’s Rule, to determine the coordinates for x. Followed likewise for the
y component, namely evaluate sin(0.5 pv?) then integrate using say Simpson’s Rule. The
graphical presentation of the Cornu spiral is then obtained by plotting y against x as
depicted in the Figure 1 following. An examination Figure 1 indicates Cornu spiral
automatically satisfy radius of curvature continuity should the spiral originate from
tangency with a straight line.

Cornu SpiralUptou =1
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Figure 1 Typical Plot of Fresnel Function up to u = 1 with a unit scale factor.

The turning effectiveness of the Cornu spiral is apparent by comparing the turning
effected by a unit circle to that effected by a Cornu Spiral. The cornering effectiveness of
the Cornu spira relative to a unit circle is apparent from an examination of Figure 2
following.

Comparison of Cornering
Effectiveness Cornu Spiral to Circle

Figure 2 Comparison of Turning Effectiveness between a Fresnel function path (Series 1)
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and a constant radius bend (Series 2).
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Further manipulation of the Cornu spiral expressed in integral form as mathematically
described by Eqgns (1) and (2) proves difficult. This anaytical difficulty can be
surmounted by use of graphical analysis techniques. Fortunately the integrand form of
the Fresnel function can be suitably approximated by the following polynomial
expressions (Tuma 1979).

S(x) = (1o3/(113) — 1 X/(3!7) +1.xY/(5111)- 1.x*%/(7115) +....)

= 0.333333x°—0.02381 x’ +0.000758 x** —0.000013 x*° ... (4)
and

C(x) = (Lx/(0'1 — 1/(2!5) + 1.x%/(419) — 1X3/(6113 + ...)
=1.00000x — 0.1 X + 0.00463x° — 0.000107 x*3 (5)
where x = (0.5p)°° v.

Here the coordinates of the Cornu spiral are adequately approximately by
Y(X) = §(x) from equation (4)

X(x) = C(x) from equation (5)

Differentiation of equation (4) and (5) yields the approximate slope of the Cornu spira to
be
dy/dx = SX)/C(x) (6)

From which it follows, from the differential of a quotient rule, that
d?y /¢ = (C'(X) S"(X) =S (x) C” () (C'(x))*) ()

Knowledge of the differential polynomial expressions, equations (6) and (7), alows
evaluation of the radius of curvature (r (x)) as a function of distance along the path. The
typical variation in the radius of curvature along a Cornu spiral up to u = 1 is given in
Figure 3 following. An examination of this Figure indicates the Cornu attains, after
commencing from infinite radius of curvature (ie as straight line), attains the radius of
curvature of a unit circle a approximately u = 0.5. Examination of Figure 3 also
confirmsthe Cornu spiral exhibits radius of curvature continuity when fitted tangent to a
commencing straight line.
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Radius of curvature variation for a
Cornu Spiral
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Figure 3 Variation in the dimensionless radius of curvature along a Cornu spiral (u = 1)

Improved understanding of the significance of the Cornu spira is effected by
simultaneously plotting the instantaneous turn angle (which fortunately corresponds to
the change in direction from the start to a specific point along the Cornu spiral) along
with the radius of curvature for the spiral. This double variation is presented in
dimensionless variables in Figure 4 following.

Turn angle and radius of curvature
versus distance along path,u
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Figure 4 Variation in dimensionless radius of curvature (Seriesl) and the turn angle
(Series 2) along a Cornu spird.

An examination of Figure 4 confirms that the Cornu spiral effects efficient turns by
progressively decreasing the radius of curvature to below that for a constant radius bend
through the same turn angle. However, for the task at hand the curve geometric boundary
conditions are specified. Namely, the start (transition point with the lead in straight road),
curve apex and end coordinate (transition point with lead out straight road) of the curve
are specified. Hence for a given turn angle the Cornu spiral will effect the required turn
more effectively than a constant radius bend. As a consequence for a given turn angle,
subject to specified curve geometric end points, the Cornu spiral path which can be
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adopted through a given curve will exhibit a larger radius of curvature compared to that
of the best fit constant radius bend through the same end points. Most importantly, for
given curve start and end points a Cornu spiral can be fitted. However, this curve fitting,
using the integral expressions (Equations (2) and (3)), respectively is extremely complex
(Bower 1994). This numerical difficulty is considerably eased by use of the polynomial
expressions (Equations (4) and (5)), geometric scaling and spreadsheet goa seek
operations.

Particular Properties of the Cornu Spiral

Meek and Walton (1989), have defined a few important formulae for the Cornu spiral
possessing scaling parameter a. - These formulae include:

Angle of tangent: pu?/2

Curvature: pu/a

Arc length : ds= adu

Centre of circle of curvature : (a/u C(u), au(S(u) + 1/p))

A stated by Meek and Walton (1989) two line segments forming a known angle W in
planar space (0, p) can be connected by a pair of symmetrical Cornu spirals with the
value of the parameter t, where the spirals meet is

to = (1- W/p)°® ©®

with the distance aong the lines from their intersection to where the cornu spiral meets
thelinesis

C(to) + S(to) cot (0.5W) )
Example

Consider a vehicle effecting a 90° turn around a 81.85 m, mid lane, radius bend with a
constant lane width of 3.7m. Assume also a truck width of 2400 mm and ignore the
undercutting of the semi trailer at the apex of the curve.  Assume the combined
pavement and super elevation factor is 0.4.

Based on the Austroads (1997) model the predicted nominal cornering speed is 64.52

km/h. In comparison using the available lane space for different curve commencement
positions and effecting a constant radius turn the following safe turn speeds are predicted.

Table 1 Theoretical constant radius safe cornering speeds

Set up distance, m Optimal constant Theoretical Factor
radius, m curveing speed, Theor./Austroads
km/h -
-15 (early) 110.7 67.4 1.045
-9 81.95 64.56 1.006
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-6 81.95 64.56 1.0006
-3 92.2 66.07 1.024

-1 90.7 66.06 1.024

0 85.85 66.08 1.024

+1 (late) 89.3 66.11 1.024
13 87.9 66.25 1.027
6 86.32 66.26 1.027
+9 86.58 66.36 1.028
+12 86.87 66.47 1.030
+15 79.3 66.6 1.032

The information presented in Table 1 is conveniently summarized in Figure 5 following.
An examination of Figure 5 reveals that effecting a constant radius turn through a curve
only provides a small increase in the safe cornering speed. Furthermore the magnitude of
the same indicates only minor sensitivity to the curve set up position.

Normalised cornering parameters vs
corner set up position
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Figure 5 Predicted variation in relative curve radius of curvature (Series 1) and relative
safe cornering speed (Series 2) versus curve set up position for constant radius path with
variable lane clearance through curve.

In comparison the theoretical symmetrical Fresnel analysis predicts the following safe
cornering speeds as summarized in Table 2 following.

Table 2 Theoretical optimal cornering details

Fresnel Curveset up | Smallest radius Theoretical Factor
parameter, a, m of curvature, m Vimax Theor/Austroads
-, (a=1) km/h -
0.70712 -35.00 181.8 96.6 1.497
0.8862 0 81.85 68.53 1.062

An examination of Table 2 reveals, when adopting Fresnel paths, that boundary
conditions are critical in controlling the magnitude of the curve’'s apex curvature which,
in turn, governs the theoretical safe cornering speed for a given curve. The same, in turn,
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implies that correct set up by drivers is essentia for ‘above nomina curve speed’
negotiation of particular curves. This correct set up requires the driver to commence
turning a relatively large distance before the curve's transition point, continue to apply
smooth increasing lock and pass the curve's apex along the tangent to the geometrical
curve of constant radius. These requirements imply considerable driver skill which, in
turn, implies considerable practice and experience. Table 2 implies also a typica heavy
vehicle driver can, subject to favourable road, weather and vehicle conditions, safety
negotiate a typical turn at between 1.06 to 1.50 times the nomina speed based on
constant lane clearance and a constant radius path.

Implications

This analysis reveals adoption of constant radius turns utilizing the available lane space
associates with only a small predicted increase in the safe cornering speed. Furthermore
this small increase is relatively insensitive to the curve set up position.

In comparison the set up position is critical in effecting a (symmetrical) Fresnel path
through a given curve. Notably safe cornering speeds in access of 45% of the nominal
safe curve speed is possible provided the driver commences the turn extremely early,
continues to apply steadily increasing lock and then passes along the tangent to the
curve's apex with simultaneous zero lane clearance. Whereas should a driver commence
a turn at the curve’'s geometric entry transition point and effect a path which exactly
coincides with the curve's minimum turn radius the safe cornering speed is only some 6%
higher.

The ability to effect above nominal speed cornering is very dependent on driver skill.
Notably the ability to commence a turn well before the curve' s entry geometric transition
point, to apply steady smooth increasing lock, to identify the curve’'s entry transition
point, the curve’'s apex and tangent at the apex. In addition the driver must alternatively,
with respect to the side of the vehicle, and in smooth succession establish zero clearance,
at the commencement point, at the corner’s apex and finaly exiting the curve. The
satisfaction of these multiple simultaneous requirements implies drivers must develop
considerable skill to regularly effect above nominal speed cornering. This skill is
established by experience and practice and demands drivers be familiar with specific
curves. The same aso implies that the vehicle must be stable entering the curve. Should
avehicle instability occur at or near the curve's entry transition point a deviated path will
invariably occur. Any deviation from a smooth path suggests high risk of a heavy vehicle
accident. Indirectly the same suggests that should a driver enter a curve, in excess of 6%
greater than the curve’s nominal cornering speed, and then experience a relatively minor
deviation, due to say numerous unspecified causes, the subsequent path will deviate
grossy from the optima Fresnel path. This gross deviation will expose the vehicle to
high risk of complete loss of control.

The sengitivity to the set up position and in turn ‘smoothness’ vividly suggest single
vehicle heavy vehicle accident investigations closely examine the actua curve set up
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conditions, vehicle operation characteristics and geometrical implications.  Such
information may for example be evident from post accident heavy vehicle tyre scuff
marks. Unfortunately, based on the author’s experience, details of the vehicle pre curve
or entry transition point actual set up position is typically grossy deficient from post
accident photographic evidence.

The need for proper set up and smooth paths through curves, by association, implies that
single vehicle accidents on curves with which drivers are intimately familiar warrant
closer examination of possible contributing factors relative to that involving single
vehicle accidents at curves with which drivers are unfamiliar.

This analysis confirms that commencing a turn late significantly diminishes the safe
curve speed whereas commencing turns early is generally considerably safer. The implied
suggestion, for road design personnel is to provide heavy vehicle drivers with improved
signage / pavement markings to indicate the curve entry braking zone commencement
and curve entry transition point.

An indirect implication of this analysis and tools developed is the possible extension of
the same to the optimal geometric design of road curves (Meek and Walton (1989) using
widespread pc based spreadsheet software. Other significant applications would be to
enhance driver cornering skillsin heavy vehicle driver education programs and for
accurate on going monitoring driver skills. These long term applications will yield long
term and effective contributions to general road safety.

Conclusion

This analysis confidently accounts for and predicts a contributing factor to explain heavy
vehicle practical cornering speeds. It should be noted this symmetrical Cornu spiral
analysis assumes typical curve cambers and details with the same ignored in this initial
investigation.  Further the same ignores the true three dimensional camber angle
established by the combination of the road super elevation and gradient (ie general up or
down grade). These latter second order effects are currently under investigation. This
analysis reveals that above nominal speed cornering demands that drivers be adequately
skilled and be familiar with the geometry of each specific curve along the haul route.
Such cornering requires drivers, on a regular reliable basis, commence turning early,
apply steady smooth increasing curve lock and satisfy multiple simultaneous exacting
geometric boundary conditions. This professional heavy vehicle driving operation
demands unyielding vigilance. The analysis presented has significant implications in
regard single vehicle heavy vehicle accident investigations and prompts suggestion for
improved curve signage for heavy vehicle drivers. Longer term applications of this
analysis include optimal design of road curves using spreadsheet predicted Cornu spiral
coordinates, explaining optimal cornering mechanics in driver education programs and
for ongoing monitoring of driver skills. These applications will provide long term and
significant contributions toward the goal of a zero road toll.
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