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INTRODUCTION

In recent years the traditional objective of improving road network efficiency is being
supplemented by greater emphasis on safety, incident detection management, driver
information, better car park utilisation, environmental issues and the provision of priority to
public transport and pedestrians.  In line with this increasing interest in Intelligent or Smart
transport systems (ITS), the current and future trend is moving towards proactive systems.
The essential component of a proactive system is short term prediction of traffic flow.  The
predicted traffic flow then becomes the input to many integrated applications such as proactive
traffic control system, travel information system, dynamic route guidance system and incident
management system.  Without a predictive capability, ITS can only provide services in a
reactive manner.

The objective of this paper is to review techniques that are used to predict travel flow using
field data from Melbourne’s freeway to evaluate their robustness and accuracy of the
techniques.  The techniques used in the evaluation are:
• Regression,
• Historical average,
• ARIMA (Auto Regressive Integrated Moving Average), and
• SARIMA (Seasonal Auto Regressive Integrated Moving Average).

REVIEW OF SHORT-TERM TRAFFIC FLOW PREDICTION TECHNIQUES

Regression

Regression analysis is a statistical technique that is often applied when some relationship is
presumed to exist between a single dependent variable and one or more independent
variables.  The objective of regression analysis is to determine (ie. predict) the expected value
of a dependent variable in response to changes in one or more independent variables.  The
typical form of a multi-variate regression equation with n number of independent variables is as
follows:

y =  a + b x b x b x1 1 2 2 n n+ + +...

where:

y is the predicted value of the dependent variable;

a is the y-intercept; and

bi is the coefficient assigned to the independent variable, xi.

Historical Average

The historical average model uses an average of past traffic flows to forecast the future traffic
flow.

q(t+1)  = qh(t+1)
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The basic premise behind the historical data based algorithm is that traffic patterns are
seasonal.  In other words, a knowledge of typical traffic conditions on Tuesday at 5:30pm will
allow one to predict the conditions on any particular Tuesday at 5:30pm.

Using historical data helps capture the shape of the traffic flow pattern, including the degree of
peaking and its starting and finishing times.

Various refinements of historical average have been made to enhance the predictive accuracy
of this technique.  One example is the use of linear scaling shown in the equation below.

q(t+1) = qh(t+1) + k [qh(t) – q(t)]

where:

qh(t+1) is the historical average flow at time t+1

q(t+1) is the predicted flow at time t+1, and

k is a constant.

Although, these algorithms perform reasonably well during normal operating conditions, they
do not respond well to external changes in the system such as weather, special events, or
modified traffic control strategies

ARIMA (Auto Regressive Integrated Moving Average)

ARIMA (Auto Regressive Integrated Moving Average) is a statistical based method of the
time-series analysis popularised by Box and Jenkins (1970) in the early 1970s.  The ARIMA
model is based on the premise that the knowledge of past values in a time series is the best
predictor of the variable in question.  In other words, the ARIMA model can produce
accurate short term forecasts based on a synthesis of historical patterns in data and does not
assume any pattern in the historical data of the time series.

A non-seasonal ARIMA model ARIMA(p,d,q) refers to the p degree of the AR process, d
degree of the I component and q degree of the MA process.  The number of p, d and q terms
start from 0.

The autoregressive (AR) term is the self deterministic part of the series and is simply the time-
lagged values of the forecast variable, expressed in the form:

Yt = c + (φ1B + φ2B
2
 + … + φpB

p
)  Yt  + et

Yt = c + φ1 Yt-1  + φ2 Yt-2  + … + φp Yt-p + et

where

B is the backward shift operator, BYt = Yt-1

et is the error term that represents random event not explained by the model,

p is the number of AR terms.

φ1 … φp are the autoregressive coefficients, and
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c is a constant.

The integrated (I) term refers to the differencing of the data series to make the series
stationary.  A stationary series means that the data fluctuate around a constant mean,
independent of time, and the variance of the fluctuations remains essentially constant over time.
By allowing differencing of the data series, the ARMA model can be extended to non-
stationary series and is said to be an "integrated" version of a stationary series.  The d degree
of differencing I(d) can be expressed in the form:

(1 – B)
d Yt = c + et

where

d is the number of non-seasonal differences.

For first difference, I(1):

(1 – B) Yt = c + et

Yt – Yt-1  = c + et

It is often convenient to redefine the first difference series '
tY  as Yt – Yt-1.  If the first

difference does not convert the series to a stationary form, then the first difference of the first
difference (second order differencing) can be created.

Second order difference: (1 – B)
2
 Yt = c + et

Yt = 2Yt-1 − Yt-2 + c + et

''
tY  = Yt – 2Yt-1 + Yt-2

Note a distinction between second order difference, ''
tY , defined above and a second

difference (Yt – Yt-2).

The general equation for the ARIMA(p,d,q) model can be written as:

(1 – φ1B – φ2B
2
 – … – φpB

p
) (1−B)

d Yt = c + (1–θ1B – θ2B
2
 – … – θ qB

q
) et

The moving average (MA) term is the disturbance component of the series and is a moving
average of the successive error terms, expressed in the form:

Yt = c + (1 θ1B – θ2B
2
 – … – θ qB

q
) et

Yt = c + et – θ1 et-1 – θ2 et-2  – … – θ q et-q

where

q is the number of MA terms,

θ1 … θ q are the moving average coefficients, and

et-1 … et-q are previous values of residuals.
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Seasonal ARIMA (SARIMA)

The ARIMA models that have been discussed so far are linear functions of the most recent
few observations.  If the time series is seasonal (ie. a series with a pattern that repeats itself
over fixed intervals of time), a seasonal ARIMA can be applied to handle the seasonal aspects
of the time series.

The general notation for seasonal ARIMA model is: ARIMA(p,d,q)(P,D,Q)s

where:

(p,d,q) is the non-seasonal part of the model explained above,

(P,D,Q)s is the seasonal part of the model,

P is the seasonal autoregressive (SAR) terms,

D is the seasonal differences,

Q is the seasonal moving average (SMA) terms, and

s is the number of periods per season, for example for a monthly series with a pattern
that repeats itself year after year, s=12.

The equation for the ARIMA(p,d,q)(P,D,Q)s model is

(1–φ1B…–φpB
p
)(1–Φ1B

s
…–ΦPB

s+P-1
)(1−B)

d
(1−B

s
)
D
Yt = c+(1–θ1B…–θ qB

q
)(1–Θ1B

s
…–

ΘQB
s+Q-1

) et

where

Φ1…ΦP are the seasonal autoregressive coefficients, and

Θ1…ΘQ are the seasonal moving average coefficients.

CASE STUDY

Site Description

This study focuses on the inbound section of Melbourne’s Eastern Freeway between
Doncaster Road and Hoddle St (see Figure 1).  The data used in this study was obtained
from VicRoads raw traffic data collected on freeways in Melbourne.  Inductive loop
detectors, placed every 500m along each lane of the freeway, were used to measure speed,
flow and lane occupancy data every 20 seconds.  Data from a select number of detectors
were used in the study.

Software was developed to extract the raw data collected on Eastern Freeway and aggregate
the data into specified time intervals (eg. 15 minute volume).  The software has a compliance
factor feature that allows “incomplete” data to be scaled up.  For example aggregating 20
seconds data into 15 minute intervals (ie. 60 data points) with a compliance factor of 95%
would allow data sets with greater or equal to 54 data points, to be scaled up to a full 15
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minutes data.  This feature increases the amount of useable data and also gives the flexibility to
specify the level of tolerance required for the analysis.
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Figure 1 – Eastern Freeway Site

Data Analysis

Becoming familiar with a data set is advisable before applying any prediction techniques.
Without a thorough examination of the data the performance of any candidate technique can
be undermined.  By studying the original data set one can minimise the impact of any outliers
or missing data and the potential for violating assumptions (eg. normality), which is important
as these effects can be compounded across several variables to produce significant levels of
error.

To gain some general understanding of the data’s qualitative properties the simplest exercise to
perform is to graph the data.  Figure 2 presents the flow measured at detector station D
between 5 am and 10 pm for one week from Monday 13th July to Sunday 19th July, 1998.
This graph indicates the presence of some patterning in the flow by time of day and the
repetitive or “seasonal” quality of the data.

A more analytical approach of determining the qualitative characteristics (ie. categorical
subgroups) of the data is to undertake a cluster analysis.  The objective of this technique is to
identify relatively mutually exclusive, homogeneous groups within a sample of entities abased
on the similarities between the individuals.

In this study the agglomerative hierarchal clustering technique was applied to the data set.  The
average linkage between groups clustering method and the squared Euclidean distance
measurement were adopted.  The cluster analysis was conducted using data measured at the
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D detector site during the six weeks between the 19th June to 26th June and 13th July to 11th

August, 1998.  It was intended that the cluster analysis be conducted on data from typically
normal days.
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Figure 2 – Flow at detector station D between 13/7/98 – 19/7/98 (from 5am to 10pm)

Data during the school holiday period (between the 27th of June to the 12th of July) were
excluded from the analysis.  The data were aggregated into 30 minute intervals between 5.30
am and 10pm.  The final data set consisted of 1216 samples for each variable: flow, day of
week and time of day.  Cases were eliminated if any of the three variables contained missing
data.

Cluster analysis was undertaken for the weekdays and weekend using the flow and day of
week as variables.  The cluster solutions show fairly consistent behaviour over the five
weekdays, with the time of day (in particular the morning peak) as the main distinguishing
characteristic of each cluster solution (see Figure 4).  Although the weekend was not singled
out as a different cluster, Saturday and Sunday clearly exhibit different daily patterns (ie. the
absence of extremely high traffic flows during the morning peak period) compared to the other
days of the week.

Holiday Period Versus Normal Traffic Flow

Data during the holiday period was also examined.  As part of the first step of the data
analysis, the traffic flow on selected days during the holiday period was plotted against the
same day of the week during the normal period (see Figure 3).  The traffic flow pattern over
the holiday period does not appear to be very different from that of the normal traffic flow
pattern.  A paired samples t-test was also conducted to confirm this matter.  The little
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difference between the traffic flow patterns indicates that the majority of traffic using the
freeway is work-based travel so is largely unaffected by school holidays.
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Figure 3– Traffic flow on a Monday during the holiday period and under normal
conditions
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Figure 4 – Flow versus time of day depicting three cluster solution for flow, time of day
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MODEL SELECTION AND CALIBRATION

This section provides an outline of the calibration of the prediction techniques (historical,
regression, seasonal and non-seasonal ARIMA) that are subsequently evaluated in next
section.

Data from detector station A were used for calibrating and validating the techniques evaluated.
The calibration data consists of only weekdays (19, 22-26 June 1998, 13-17 July 1998).  The
techniques were validated using weekday (20-24 July 1998) and weekend data (25-26 July
1998).  Validation against weekend data would highlight the robustness of the techniques.

A 15 minute prediction horizon was used for this study.  Prediction horizons between 5 and 30
minutes represent a worthwhile forecasting window.  Shorter periods than 15 minutes tend to
produce unstable results.  On the other hand, longer time intervals remove high frequency
variations and smooth the trend and pattern within the data.

Two statistical error measures: mean absolute error (MAE) and root mean square error
(RMSE) were used for model identification, parameter estimation and forecasting accuracy
estimation. AIC (Akaike's Information Criterion) indicator, was also applied to the time series
models for model selection.  AIC is not applicable to other techniques.  The mean absolute
percentage error (MAPE) is also presented for each of the techniques investigated.

Regression

The various regression models that were developed to determine the flow at time t at station A
(ie. the dependent variable), used different combinations of the following independent
variables:

• the flow, q, at times t-1, t-2, t-3 at station A, and

• the flow, qu, at times t-1, t-2, t-3 at upstream station B, and

• the flow, qu+1, at time t-1 at station C further upstream.

Regression models are commonly developed using the least squares method.  The objective of
the method is to minimise the sums of the squared residuals or error (ie. the difference between
the observed value and the estimate), as a criterion to obtain the best fit.

In this study, various regression models were developed using the confirmatory method based
on the findings of a correlation matrix of all candidate variables and the results of several
stepwise model estimations.

Table 1 presents the calibration results of only some of the multiple linear regression models
that were developed during the analysis.

Table 1 – Calibration Results of Multiple Linear Regression Models
Model

No.
Regression Model MAE RMSE MAPE

(%)

1 q(t)=Aq(t-1)+B 201 341 13.3
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2 q(t)=Aq(t-1)+Bqu(t-1)+C 200 327 13.6

3 q(t)=Aq(t-1)+Bqu+1(t-1)+C 225 377 15.2

4 q(t)=Aq(t-1)+ Bq(t-2)+Cqu(t-1)+ Dqu(t-2)+E 189 280 14.4

5 q(t)=Aq(t-1)+ Bq(t-2)+ Cq(t-3)+Dqu(t-1)+ Equ(t-2)+F 187 280 14.5

The results presented in Table 1 show that including a lot of variables does not greatly improve
the model’s performance.  For example, there is only less than 7% difference between Models
1 and 2 and Models 4 and 5.  The results also indicate that using traffic flow values measured
too far upstream do not enhance the model’s performance.

The greatest difference between these models is shown when the predicted and observed
traffic flows are plotted against the time of day (refer to Figure 5).
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Figure 5 – Traffic flow versus time of day predicted using Model 4

All of the regression models demonstrate some degree of “lagging” between the predicted and
the observed traffic conditions.  That is, the regression models cannot quickly adapt to
changes in relatively current traffic conditions without a point of reference.  Increasing the
number of variables in the model (ie. the inclusion of flow values measured at times further into
the past) decreases the “lag” because there is more information about the previous traffic flow
values and patterns.

The presence of lagging is not sufficient justification for including a large number of
independent variables into the regression model.  A ratio of past and current traffic flow
variables was included in the model (eg. q(t-1)/q(t-2)) to introduce some information about the
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past.  A variety of different variable combinations were calibrated.  Table 2 presents the
results.

The inclusion of the variable ratio slightly improves the performance of the models in relation to
the indicators.  The ability to reduce the presence of “lagging” between the regression model
and the observed traffic conditions is fairly similar (especially in Model 7) to that of Models 4
and 5.

Table 2- Calibration Results of Multiple Regression Models Using Ratios
Model No. Regression Model MAE RMSE MAPE

(%)

6 q(t)=Aq(t-1)+Bqu(t-1)+C(qu(t-1)/qu(t-2))+D 204 302 20.5

7 q(t)=Aq(t-1)+Bqu(t-1)+C(q(t-1)/q(t-3))+D 190 281 17.5

8 q(t)=Aq(t-1)+B(q(t-2)/q(t-3))+C 201 313 18.6

Models 1 and 7 were subsequently validated using the validation data set.  The results of
which are presented in the next section.

Historical Average

Two historical average models, simple historical average, q(t+1) = qh(t+1) and a variant of
historical average q(t+1) = qh(t+1) + k [qh(t) – q(t)], were evaluated.  Both models (simple
and enhanced) rely on the calculation of a historical average to be used as a reference.
Weekday data from 19th to 26th June were used to form the historical reference.  Estimation of
parameter k in the enhanced model was carried out using the performance indicator MAE
and RMSE.

The two models performance are presented in Table 3.  The calibration results showed that
using an adjustment factor k with the historical average to reflect the measured traffic flow
condition performs better than using historical average alone.

Time Series

The Box-Jenkins methodology that involves a three-stage cycle was used. For a detailed
description of the Box-Jenkins methodology refer to Makridakis et al. (1998) and Newbold
and Bos (1994).  The first step requires the selection of the appropriate degree, d, of
differencing, and the autoregressive and moving average orders, p and q of the ARMA model.

Once the potential models from the general ARIMA class have been selected for fuller
analysis, the second step is to estimate the unknown coefficients of all the potential models.
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The best model is selected according to the closeness of fit to data using AIC (Akaike's
Information Criterion).  MAE and RMSE were also used to assist in the selection.

ARIMA(1,1,0) and ARIMA(2,1,0) were found to be the most suitable for this study (see
Table 3).  The lower autoregressive, order ie. ARIMA(1,1,0) was selected for validation
because the higher autoregressive order did not significantly increase the predictive accuracy.

Seasonal ARIMA (SARIMA) was applied to the calibration data using a season of 1 day
(s=96) and 1 week (s=672) to represent traffic flow patterns that repeats itself every weekday
and every specific day of the week respectively.  SARIMA(2,1,0)(1,0,0)672 is the model
closest fit to the calibration data and performs better than the same model with a season of 1
day, SARIMA(2,1,0)(1,0,0)96 (see Table 3). SARIMA(2,1,0)(1,0,0)672 is selected for
validation.  Also, the SARIMA model does not have the “lagging” effect of the ARIMA model
(see Figure 7 and Figure 8).

Table 3 – Calibration Results of Historical Average and Time Series Models
Model Type Model MAE RMSE MAPE (%)

Historical Average q(t+1) = qh(t+1) 169.6 248.7 10.1

Historical Average q(t+1) = qh(t+1) + k [qh(t) – q(t)] 119.0 176.0 7.4

Time series ARIMA(1,1,0) 196.3 308.2 11.6

Time series ARIMA(2,1,0) 193.7 307.1 11.3

Time series SARIMA(2,0,1)(1,0,0)96 136.6 229.0 8.9

Time series SARIMA(2,0,1)(1,0,0)672 83.6 184.6 4.9

MODEL RESULTS AND EVALUATION

A total of six models were calibrated and the validation results are presented in Table 4.
Based on MAE and RMSE, the enhanced historical average model (see Figure 6) has the
best performance, and the regression and ARIMA(1,1,0) models have the worst performance
(see Figure 7). Although the SARIMA(2,0,1)(1,0,0)672 has the best performance in the
calibration (see Figure 8), this model did not perform as well as the enhanced historical
average model.

A practical measure of the predictive accuracy of the models is to evaluate the percentage of
predicted flow within say 5 percent error.  For the enhanced historical model, 74.6% and
91.9% of the predicted flows are within 5 and 10 percent errors respectively.  Compared to
enhanced historical average, SARIMA(2,0,1)(1,0,0)672, has 69.7% and 85.4% of the
predicted flows within 5 and 10 percent errors respectively.

The strength of historical average models is that the uses of historical data helps capture the
shape of the traffic flow pattern, including the degree of peaking and its starting and finishing
times.  This characteristic is an advantage over some other techniques, such as the regression
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model, that has difficulty predicting the shape of the traffic flow pattern and produce "lagging"
behind the actual traffic flow pattern.

To test the robustness of the enhanced historical average model and the SARIMA model,
weekend data (25th -26th July 1998) were used.  The results (see Table 5 and Figure 9)
clearly highlight the weakness of the historical average model, that is its inability to predict
traffic pattern when current traffic pattern is very different from the historical pattern.  Hence it
is important that historical data are categorised into homogeneous groups.

Although the historical average models perform well during normal operating conditions, they
do not respond well to external changes in system such as weather, special events, or modified
traffic control strategies

Table 4 – Validation Results
Model Type Model MAE RMSE MAP

E (%)

Regression q(t)=Aq(t-1)+B 194.0 345.0 14.3

Regression q(t)=Aq(t-1)+Bqu(t-1)+C(q(t-1)/q(t-3))+D 181.0 281.0 18.2

Historical Average q(t+1) = qh(t+1) 158.2 231.0 10.5

Historical Average q(t+1) = qh(t+1) + k [qh(t) – q(t)] 110.2 172.9 7.3

Time series ARIMA(1,1,0) 193.2 311.8 12.0

Time series SARIMA(2,0,1)(1,0,0)672 154.7 270.3 8.8

Table 5 – Validation Using Weekend Data Results
Model Type Model MAE RMSE MAPE (%)

Historical Average q(t+1) = qh(t+1) + k [qh(t) – q(t)] 252.9 434.3 20.3

Time series SARIMA(2,0,1)(1,0,0)672 150.3 200.1 10.3
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Enhanced Historical Average - Validation
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Figure 6 – Validation of Enhanced Historical Average Model

ARIMA(1,1,0) - Validation
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Figure 7 – Validation of ARIMA(1,1,0)
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SARIMA(2,0,1)(1,0,0)672 - Validation
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Figure 8 – Validation of SARIMA(2,0,1)(1,0,0)672

SARIMA(2,0,1)(1,0,0)672 - Weekend
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Figure 9 – Validation of SARIMA(2,0,1)(1,0,0)672 using Weekend data
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CONCLUSION

The enhanced historical average and SARIMA hold considerable promise for application to
traffic flow prediction.  The strengths of these models have been demonstrated using real life
freeway data.

One common weakness of the regression and ARIMA models is their inability to forecast the
traffic flow pattern and the production of a “lagging” effect.  The SARIMA model has a
seasonal component that captures the seasonal aspect of the traffic flow pattern and eliminates
the “lagging” effect.  The enhanced historical average can also capture the shape of the traffic
flow pattern using historical data.

Advantages of the historical average include the ease of implementing this model and its high
execution speed.

Although the enhanced historical average performs well during normal operating conditions, it
does not respond well to external changes in the system such as weather or special events.
This study demonstrates the weakness of using the historical average technique based on a
weekday historical pattern for predicting weekend traffic flow.

The limitation of the historical average could be overcome by categorising data into different
homogeneous groups that can be applied to the appropriate condition.

Time series models rely on past data for prediction and there is an issue with the handling of
missing data when implementing a time series model.

Further study should be carried to test SARIMA and the historical average technique on other
sites and to test the predictive accuracy of SARIMA by feeding the measured data back to
the model.  It would also be beneficial to test the performance of SARIMA on shorter-term
prediction horizons of 2-10 minutes, as some traffic management and information systems
need to predict traffic conditions in few minutes time for effective traffic management.

Dia (2000) demonstrated that neural network (time-lag recurrent network) has the capability
to reduce or eliminate the lagging effect and to produce prediction accuracies of up to 95
percent.  It would be valuable to compare the performance of SARIMA and neural network
based on the same data set in future work.
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