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Introduction

Transport planners are regularly faced with the problem of selecting from a wide range of
infiastructure options or projects, a subset of options (or a single option) that are in some
sense 'best' relative to a budget constraint The choice is often complex in the sense that the
range of options is wide in terms of pr()ject type, cost, impacts or objectives to be achieved;
impacts and objectives are often difficult to quantiry in precise numerical terms; and there are
multiple stakeholders rather than a single decision-maker Increasingly, the assessment of
transport options involving the same mode are being replaced by multimodaI assessments
involving, for example, comparison ofadditional road capacity along some freeway or
arterial, the construction of a busway or light rail system, etc (NCHRP, 1994). In addition,
emphasis is progressively on ecologically sustainable development factors in the assessment
of transport infrastructure options, particularly as related to the conservation of non-renewable
resources, reduced emission of greenhouse gases to abate global warming, and the promotion
ofenergy conservation and low energy use transport modes (ESD Working Groups, 1991)
Clearly opportrmities for the application of multi-objective decision support (MODS) to
compare and discriminate between alternative transport options present themselves

Recently, Schwartz and Eichhom (1997) have advocated a simple form ofmulti-attribute
utility analysis as a means to involve multiple stakeholders in a collaborative MODS process
Schwartz et aI (1998) further elaborated this approach in a comprehensive evaluation of
modal options for a congested highway segmentjust outside Portland metropolitan area. Key
project objectives related to the satisfaction of local travel nee,;f, (including those of low­
income and disadvantaged groups), satisfaction of commuter ,freight, recreation/tourist travel
needs, health and sqfety, environmental quality, community economic activity,socio-cultural
quality, minimisation ofcosts (in terms oflolls/fares and from other sources), and
maxirnisation ofthe likelihood of implementation

The MODS methodology elaborated by Schwartz and Eichorp (1997), essentially additive
weighting, is substantially that proposed by Schimpeler and Grecce (1965) and Jessiman et al
(1965) More recently, other MODS methodologies have been developed albeit mostly by
academics and resear'chers rather than transport professionals In particular, a MODS
methodology that has had increasing application in the assessment oftransport options is the
analytical hierarchy process (AHP) (Saaty, 1977a) Briefoutlines ofsome of these
applications of the AHP in transport planning to problems involving multiple objectives or
attributes have been given (Saaty, 1995) The AHP is a MODS method for presenting the
elements (objectives, sub-oJ:>jectives, attributes, options) involved in a decision in a multi­
level hierarchy Pertinent data (weights for objectives, sub-objectives and attributes, relative
performance measures for options) are derived through pairwise comparisons

Saaty (l9T7b) first applied the AHP in the Sudan transport study.. In this study, air, road, rail,
and port transport options (103 in all) satisfYing economic, social and political constraints
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were prioritised Pak et al (1987) used the AHP to discriminate between alternative public
transport systems for implementation in a newly planned city while Ulengin (1994) used the
AHP to discriminate between possible infrastructure options which might solve the overall
transportation problem between the European and Anatolian regions of Istanbul including
maintaining the existing state (the Bosphorus and Faith bridges and the boat and ferryboat
system), construction ofa third bridge, improvements to connection roads to the Bosphorus
and Faith bridges, a turmel under the Bosphorus, and an improved boat and ferryboat system

A range ofother MODS methodologies have also found application in a transport context
Van Huylenbroeck (1991) used a methodology (average value ranking), a variant ofadditive
weightiog, to compare the environmental effects ofalternative routes for a high speed train
(HST) through Belgium In this application attributes included loss ojbiotopes, barrier
effects, hydrological effects, loss ojagricultural land, intersection offarms, traffic
disturbance, etc Rogers and Bruen (1996) used ELECTRE to rank options within an
environmental appraisal of by-pass options for a single carriageway running through
Kilmacanogue village in heland ELECTRE establishes the degree ofdominance or
outranking that each option has over another Unlike additive weighting, ElEC TRE is non­
compensatory in that changes in one attribute cannot be offset by opposing changes in another
attribute. Attributes included effect on existing land use, severance, effect on open space and
spoftingfacilities, vi8ual intrusion, road traffic noise, constluction disturbance, and Co.st
Tzeng and Shiau (1987) also used ELECTRE to assess energy conservation strategies in urban
transportation

However, the above methods do not readily acknowledge the uncertainty, vagueness, and
imprecision pervasive in the context of the assessment ofprojects with environmental
consequences Inherently vague, imprecise, intangible, or subjective attributes (e. g visual
intrusion, wildlife impact, lo.s> oj landscape value, social disruption) are common impacts
associated with transport infrastructure options. Outcomes along these attributes might be
more authentically represented in linguistic terms (e.g. high, low, moderate, ete), facilitated
by fuzzy sets, rather than by conversion to numerical values. Imprecision may also result
from the complexity and/or limited knowledge of systems (social, human, technological,
ecological, etc), or resomce constraints which may mean that only limited, unreliable, partial,
or imprecise data is available. Even for fully quantitative attributes (e.g savings in travel
time), outcomes of options are commonly predicted or estimated magnitudes, perhaps based
on system models, and are likely to be to some extent uncertain through a multitude of
po:ss"ble causes (e. g limited predictive accuracy of models, model specification erro"
unreliable SOUIces of data, measurement e,ror, etc. (Mackie and Preston (1998)) In such
circumstances a range ofpossible values, perhaps with a modal or most-likely value, might
more appropriately acknowledge the limitations ofmagnitude estimation and predictive
mOdels. Again fuzzy sets facilitate such representation

Thus, from the above perspectives, methods which demand less precise input are desirable.
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MODS based on fuzzy logic explicitly acknowledges uncertainty and provides an alternative
to the above methods permitting the inclusion of objectives and attributes that are uncertain
vague, imprecise or difficult to quantifY in numerical terms Fuzzy logic based methods a1s~
avoid inappropriately high levels ofdiscrimination between options that differ only slightly in
their attributes Further, fuzzy logic methods can often be constructed to integrate soft
qualitative data, subjective judgement and opinion, and hard quantitative data

Fuzzy logic based MODS methodologies are also applicable in the context of screening
problems in which there exists a large set ofpossible options each of which is represented by
a minimal amount of information supporting its appropriateness as a 'best' solution This
minimal amount of information provided by each option is used to select a subset to be further
investigated, perhaps by the commitment of more substantial resources for data collection and
analysis

Vagueness, imprecision or fuzziness is viewed as a type of deterministic unceftainty in
contrast to randomness or statistical uncertainty The latter is modelled by probability and
measures event occurrence whereas the former describes event ambiguity (Kosko, 1992)
Though probability theory has been advocated as a means to more explicitly acknowledge
uncertainty in MODS (eg stochastic additive weighting (Kahne, 1975)), it is believed that
this uncertainty is essentially ofa deterministic nature more appropriately modelled by fuzzy
set theory Thus fuzzy set theory and fuzzy logic provide a more convincing and defensible
foundation for the representation ofdeterministic uncertainty

A range of fuzzy logic based methods for MODS exist including fuzzy additive weighting
(Schmucker, 1984; Smith, 1992; Liang and Wang, 1991; Teng and Izeng, 1996),(uzzy
based systems (Smith, 1995-6, I 997a,b), jUzzy relational equations (Smith, 1999a) and
ordered weighted averaging operators (Bordogna et al., 1998; Smith, I 999b)

Fuzzy sets and fUzzy logic

Fuzzy logic can be considered as a multivalent generalisation of classical bivalent
classical logic, a proposition is true or false whereas in fuzzy logic, a proposition
to a degree and false to a degree. Fuzzy sets provide the basis for fuzzy logic. IfX

classical universal set, a real furtction defined on X, A: X~ [0, I] is called the memb,ers,hzp
function or grade ojmembership of A and defines the fuzzy set (or more p":ci,,el)',jiIZZY
sub"et) A of X This is the set ofpairs (x, A(x)), XEX A discrete fuzzy subset is repres"nt"d
as IA(x)lx. Fuzzy numbers are fuzzy subsets which are assumed to be normal (mi",ilnfun
membership equal to I) and convex Particular types of fuzzy numbers include Ira,pez,dittai;
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triangular, and bell-shaped Gaus sian and II or piecewise quadratic fuzzy numbers (based on
the concept of S and I - S functions) (Zadeh, 1975)

The power of fuzzy sets lies in their ability to represent soft linguistic variables rather than
quantitative variables A linguistic variable is one whose values are words or sentences in a
natural or artificial language (Zadeh, 1975) The concept of a linguistic variable provides a
means for the approximate characterisation of phenomena too complex or too ill-defined for
descrip~on in conventional quantitative terms, In addition, linguistic values are intuitively
easy to use in expressing the subjectiveness and vagueness ofan individual'sjudgements. A
linguistic variable is defined in terms of a base variable, whose values ar·e assumed to be real

numbers within a specific interval of the real numbers, ~, e g [0,1] or [0, IOOlln MODS,

important base variables are the performance (of options with respect to attributes) and the
importance (of attributes) Linguistic terms (e. g.. low, medium, high) approximate the actual
values ofthe associated base variable. Their meanings ar·e captured by fuzzy numbers

A linguistic term set defmes the iriformation granularity or the finest level ofdistinction
between different quantifications of uncertainty. Term sets should be small enough so as not
to impose useless precision but rich enough to allow meaningful discrimination between
options Usually term sets have odd cardinality of7 or 9 with a middle term approximately 0 5
(assuming base set [O,I]) This is consistent with limits on the information processing of
individuals (Miller, 1956) Examples ofpossible linguistic term sets for performance (poor,
wry low, low, medium, high, very high, superior) and importance (negligible, very low, low,
medium, high, very high, criticaf) are shown in Figure 1.
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Fuzzy additive weighting

Additive weighting derives the fuzzy aggregate performance ofoption i (denoted VJ as the
sum of the products of the fuzzy weight (w;l and the fuzzy performance ofoption i with

respect to attribute j ('I'ij) as VI ~ {Efli,Jjwj ® 'l'ij} e {Eflj~JjWj} (i ~ I, .. , I) Fuzzy weights and
performances may be discrete or continuous Schmucker (1984) used discrete fuzzy subsets to
represent the performance ofoptions with respect to attributes and the importance of
attributes Addition was based on the extension principle (Zadeh, 1975). More recently, fuzzy
additive weighting involving standard fuzzy arithmetic (Smith, 1995) has been presented Ibis

is represented as Vi ~ (l/J) ® {Efli,JjWj ® 'l'ij} (i = I, .. , I) Here fuzzy weights (wj) and fuzzy
performances ('I'ij) are expressed in terms of continuous (triangular, trapezoidal, or IT) fuzzy
numbers However, it has recently been shown that a computationally efficient approach to
fuzzy additive weighting involves defUzzifYing the fuzzy numbers (representing linguistic
values of performance and attribute importance) to cr isp values prior to the use of
conventional additive weighting (T seng and Klein, 1992; Cheu and Klein, 1997).

Consider four transport optious assessed against six objectives/attributes (based on Smith,
1997a) as shown in the table below

SI'l SI NI FFI AQI CC

Option 1 poor superior very high low medium poor
; t1 Option 2 medium low superior very low superior medium
~"'._' .. """'" l'
~ Option 3 very low poor vory low superior very low very low
~., ......,..... " ..

1"~ Option 4 superior poor very low poor poor superior
~ .. ,.......... ,.

1i Importance high high medium low., ...........". __.....

Here SIT = savings in travel time, SI ~ social impact, NI ={noi,se impact, FFI
impact, AQI = air quality impact, and CC = capital cost Option 4 is minimally
environmentally sensitive emphasising predominantly engineering/economic factors; other

options satisfy the environmental factors each to a varying extent, but perform less
satisfactorily with respect to engineering/economic factors Thus

VI ~ (1/6) ® {high ® poor Efl very high ® superior Efl . Efl low ® poor}

V, ~ (1/6) ® {high ® medium Efl very high ® low Efl Efl low ® medium}

V, ~ (1/6) ® {high ® very low Efl very high ® poor Efl Efl low ® very

V, = (1/6) ® {high ® superior Efl very high ® poor Efl Efl low ®

are fuzzy subsets (shown in Figure 2) which may be defuzzified to order options in
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preference In terms of total utility values (Smith, 1995), option 2 is selected as 'best' with

preferences as O2 ;.. 0 1 >- 0 4 >- 0 3
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Figure 2 Performance of options using fuzzy additive weighting

rnle-based systems

rule-based system involves knowledge represented in terms of if then mles In
gerleHu, m rules each with n antecedents, may be expressed as

itv, is A" and V, is All and and V, is Ai, then U is B,

, V" and U me linguistic vmiables, Ail is a fuzzy subset of X, (1 e linguistic value of
All is a fuzzy subset of X, (le.. linguistic value of V,), etc., B, is a fuzzy subset of Y (i e.

lingui:stic value of U) Rules are aggregated using 'and', or 'or' (Lee, 1990). Ihe~ given
'V, is A

Ol
and V, is An, and and V, is Aa:, the mle-based system infers output 'U is

Such systems of if' then rules each with multiple antecedents and a single consequent
are: refenced to in the fuzzy logic control context as multiple input, single output (MIS0)
systenls (Lee, 1990) 01 as fuzzy ~ystems (Kosko, 1992). Inputs to a system m'e often assumed

crisp orfuzzy singletom though fuzzy inputs me possible (Lee, 1990).

eXEllllple of a fuzzy system ruight be

if V I is very high and V, is low and V, is low and V, is low
and V, is low and V, is medium then U is very strong

itV, is very high and V, is very low and V, is very low and V, is very low
and V, is very low and V, is very low then U is deimite
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if V, is high and V, is low and V, is low and V, is low and

V 5 is medium and V6 is medium then U is moderate
if V, is not low or V, is not low then U is weak

where VI = savings in travel-time, V2 = social impact, V3 = noise impact, V4 = flora/fauna
impact, Vs = air quality impact, V6 = cost. The consequent in each rule, D, represents
preftrence with term set {none, very weak, weak, moderate, strong, very strong, definite}
defined analogous to those for performance. Here, it is assumed that the base sets for the
antecedents (attributes) are quantitative, so that quantitative outcomes can be assessed for
each option. The base set for preference might be arbitrarily [0,1] or [0,100). In practice, each
rule need not include all antecedents (ie attributes) Given crisp values for V, - V, for each
option, the associated preference may be calculated from the knowledge embodied in the
rules However, a simplified fuzzy system using the set of options as the base set for each
antecedent facilitates the relative assessment ofoptions with respect to attributes according to
the extent to which the antecedent condition is satisfied (Smith, 1995-6, 1997a)

Fuzzy systems are in a sense parallel processors (Cox, 1995).. Given input values, all rules that
have any truth in their premises will fire and contribute to the output fuzzy subset Fuzzy
systems have been predominantly used in the context of control (de Silva, 1995), though other
applications in the context of evaluation have appeared (Levy et ai, 1991; Levy and Yoon,
1995) Numerous alternative structures for fuzzy rule-based systems are possible (Mizumoto,
1994; Yager and Filev, 1994; Kosko, 1992) including the approximate anaiogical reasoning
method which facilitates non-quantitative assessment ofoptions with respect to attributes
(Smith, 1997b)

Fuzzy relational equations

Given an assessment of the importance ofattribute j, ~j' expressed as a fuzzy subset of discrete
base set Z and the performance ofoption i with respectrto attributej, 1]'j' expressed as a fuzzy
subset of discrete base set Y, then a system offuzzy relational equations may be established as
~j ~ 1]ij 0 fJ'ij G= I, .. ,J). fJ"j is an (unknown) jUzzy relation between the importance of attribute
j and the performance of option i with respect to attributej, defined on base set Y x Z In
membership the jth relational equation orjUzzy composition (Ierano et ai, 1987) is ~;Cz) =

Vy,y(Tj';Cy) /\ 'Pij(y,z))

A A

Ihe solution ofthis system (if it exists) is given as Ri = nj~lJ fJ"j wher? fJ"j ~ ((1]'jY' 0a ~j) is the
largest 'Pij satisfYing ~j ~ 1]'j 0 fJ'ij, expressed in membership terms as 'Pij(Y,z) ~ Tji;CY) 0. ~;Cz)

(Sanchez, 1976). Here, 0a denotes the a-composition, where a 0. b is the a-relative
pseudocomplement of a in b (Godelian implication), defined as a 0. b = I if a < b and a a b = b
ifa > b (a, bE[O,I]) lhis is a measure of the relative degree of containment of one grade of
membership Ca) in another jb) For example, if~j = {0.7Iz" °31z" 101z,} and 1]'j ~ {O 2jy"°0ly" °81Y" 101Y,}, then 'Pij ~ {IO/(y"z,), IOICY"z,), LOKy"z,), IOICy"z,), IOICy"z,),
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Figure 3 '1'; (i = 1,2,3,4)
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(Yager, 1988) rePlesent\(d as OWA('¥li' 'I'2i' ., '¥J;) = LIFI,akbk where bkis the kth laIgest
element of {'¥li' '¥2i" '¥JJ Weights {ai' a2" aJ} (such that ttkE[O,I] and Lk-IJak = I) aIe
associated with the position ofbk. The OWA operator includes the minimum and maximum
when a ~ {a, 0, , I} and a ~ {I, 0, , A}, respectively Thus the extreme OWA opeFtors are
'and' (no compensation) and 'or' (full compensation) operators An average of the '¥ji
G= I, , J) corresponds to the OWA with weights {Ill, W,. , IlJ} The degree ofomelS of a
OWA operator is defined as orness(a) = LIFI",.c1 - k)/(J - I) Omess is an indication of the
inclination for the OWA operator to give more weight to higher membership grades than
lower ones Omess is zero for 'and' and unity for 'or' Thus, OWA weights reflect the degree
of optimi,m or pessimi,m of the decision maker with 'or' selecting the most optimistic and

'and' selecting the most pessimistic value For equal weights, orness(a) =°5 The Hwwicz
strategy involves a convex combination ofthe optimistic and pessimistic solutions with
weights a = {1., 0, ., (1 - 1.)} where the paIameter, 1., is such that 0< 1. < 1. In this case,
orness(a) = I _1. Thus, le = 1 yields the optimistic and le = °yields the pessimistic solution
To illustrate the above approach, assume that the [0,1] interval evenly divided into (say) 18
sub-intervals Discrete fuzzy subsets may be identified to represent the lingnistic labels of
performance and importance Thus, base set Y is represented as Y = {YI' y" y" y" . , YI'} =

{O, °056, °111, °167, ., I} and fuzzy subset poor (performance), for example, is
represented as poor = {lIYI' 0. 778IY" °222IY" 0ly" , 0IYI,} = {110, 0.77810056, °22210.111,
010167, .., Oil} SimilaIly, base set Z is represented as Z = {ZI' 20, Z" z" .. , ZI'} = {O, 0056,
0.111,°167,.... , I} and fuzzy subset negligible (importance), for example, is represented as

negligible = {llzl' °778120, 02221z" Olz" .... , 0lzl,} = {I 10, 077810..056, 022210 Ill,
010167, , Oil} These defilJitionsfollow)iom the)ingnistic terms defined by IT fuzzy
numbers in Figure I Then 'I'i = {'¥I.l0I' '1',.10" .. , 'I',dO,,} for each option i is shown in FigureJ
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are given in the following table

Average HUTWicz (1 = 0.5)

0.16 027'

0.18 0.23

0.10 0.22

OB 0.22

Opt"ion Pessimistic Optimistic

0.01 0.52

2 0.05 0,42

3 0,03 0.42
"f'

L...~ .1 ~:?~ 0.42

~ denotes 'best' option under decision criterion

for the HUIwicz criterion, 0, > 0, > (0) = 04) The average yields option O2 as 'best'

Or"di,,.l and lingnistic ordered weighted averaging operators

methods involving additive weighting and relational equations yield fuzzy subsets that
not necessarily conespond to any term in the term set requiring either the application of

defuzzification or linguistic approximation method (i. e finding the closest term in the
set to the output fuzzy subset). Alternative methods aggregate linguistic labels by direct

computation on the labels. Terms are distributed on a scale on which a 10101 order is defined
example, let S = {so, 81,82,83,84, Ss, 56} = {poor, very low, low, medium, high, very high,

SUl'er ior) be a set of linguistic labels for periormanee where So < SI < < sm~ (=s,) So and Sm~

the lowest and highest elements, respectively Similarly, for imparlance, a linguistic term

set might be S = {so, s" S" S3' S4' S" so} ~ {negligible, very low, low, medium, high, very high,
e",,,eell} These labels may be used to represent the fuzzy nmnbers in Figure I. Let max ~

- I where #S is the cardinality (the nmnber of elements) ofS Usually it is required that the
linguistic term set satisfY the following conditions that s, V Si = s, if Si > Si and s, f\ Si ~ Si if

< Si In addition, a negation operator for a linguistic label is defined as neg(s,) ~ sm~_' Thus,
for example, neg(s,) = s,., = S4' (ie neg(low) ~ high) and neg(so) = Sm~ (i e neg(negligible) ~
C"'"Cell, neg(superior) =poor). Linguistic expressions of the performance ofoptions with

to attributes are drawn from linguistic term set S. Thus 'P'iES is the performance of
i with respect to attribute.i In addition, weights WiES reflect the importa,nce of

attributes

classical logic, quantifier s in statements or propositions may be used to represent the
nmnber of items satisfYing a given predicate However, classical logic permits only two
quantifiers,for all and there exists (not none) Zadeh (1983) introduced linguistic quantifiers
reflfe"ented as fuzzy subsets in lingui,stically quantified statements. The general form ofa
qUlmtifi,>d statement is 'Q X'S are A', where Q is a linguistic quantifier (e g. few, mosl, at

n), X is a class ofobjects and A, a fuzzy subset ofX, is some property associated with
the objects For example 'most objectives are satisfied by option i' is a quantified statement

X is a set ofobjectives, Qis the quantifier mo,st and A is a fuzzy subset of X indicating
extent to which option i satisfies each objective.

Ab'sO/'ule quantifiers, defined on the set ofnon-negative reals, lll.+, are used to represent
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amounts that are absolute in nature (about.5, more than 10) and are closely related to the
concept of the count or number ofelements Proportional quantifiers (mo.st,few, at least
halj), defmed on the unit interval, represent relative amounts Yager (1993) defines regular
increasing monotone (RlM) quantifiers (e.g. all, most, mmw) such that Q(O) ~ 0, Q(l) = I,
and Q(r) " Q(s) ifr > s Q is a fuzzy subset in the unit interval For example, the quanifier
most might be represented as, for example, (A) Q(r) = I (0.8 < r < 1), Q(r) ~ 2r - 0 8
(0.3 < r < 0.8) and Q(r) = 0 (0 < r < 0.3), or as (B) Q(r) =r', rE[O,I]

Linguistic quantifiers are formalised by OWA operators, in particular, ordinal OWA operators
(Yager, 1992). The ordinal OWA operator involves weights a = {aj, a", a,} (where alS,
a j < a, < . < a, and Vj~j.J{aj} = sm.J is defined as OWA(<p'j, <p",., <Pu) = Vj~1J{aj f\ bj} where
{b

l
, b". , b

l
} is associated with {<P'I' <p", .. , <Pu} such that bj is the jth largest <Pij The omess of

an ordinal OWA operator is given as omess(a) ~ Vj~1J(ajf\ label((J - j)/(J - 1)) where alS
and where label(o) maps a numeric value, xE[O,I], to a linguistic label, S,ES, defined as

LabeI(x) = Sk (k/#S < x < (k + 1)/#S), k = 0, .. , max, and Label(l) = Sm~

OWA weights a = {aI' a" , a l } are associated with the a priori defmition of the RIM
quantifier, Q ajES is obtained by applying the Label(o) function as aj ~ Label(QG/J))
(j = 1,... , J). For six attributes, OWA weights are a = {label(Q(l/6)), Label(Q(2/6)),... ,
Label(Q(I))} = {so, so, s" S" S6, S6}· The importance of attributes, w = {high, very high, high,
high, medium, low} = {s" s" s" s" s" s,}, may be included by modifYing the values to be

aggregated (Yager, 1992), for example, as follows

h;j = (wj V (neg(orness(a)))) f\ (<p'j V neg(wj)) f\ (<p'j V (neg(orness(a))))

where WjES, <PijES, and omess(a)ES For six attributes, orness(a) =V(aj f\ Label(l),
a, f\ Label(4/5)" a6 f\ Label(l/5)} = V(so f\ S6, So f\ s" s, f\ S4, s, f\ S" S6 f\ SI' S6 f\ so} = s,
Given h;j (i = 1,.... , I; j = I, ..., J), the OWA operator is calculated as OWAQ(h'I' h", , hiJ) =

Vj~IJ{Label(Q(j/J))!I bj} (i = I, .,1)

In terms of the ordinal OWA operator using definition (A) as the quantifier most, preferences
for options are 0

1
= S" 0, = s" 0, = s" 0, = s, (le.. (01 =0,) ,. (0, = 0,)).. Thus a more

coarse discrimination between options is obtained consistent with the decreased granularity of
uncertainty adopted in the manipulation of linguistic terms or labels

It is also possible to aggregate linguistic values in a numeric environment (Bordogna et al ,
1997) That is, linguistic values <PijES and WjES are mapped inio numbers in [0, I] by applying
a linguistic label to numeric function defined as Labell(s,) = index(k)/max (k = 0, I,. , max)
where index(k) = k, (k = 0, ... , max). Thus for linguistic weights {s" S" S4, S" S" s,}, numeric
equivalents are {OB?, 0 83, 067, 0.67, 0.5, 0.33}. Then, the numeric OWA operator is
OWAo(<P'I' <P"" <Pu) =L;'I"ujbj Here, the OWAQoperator weights are determined by a RJM
quantifier, Q, so that aj = Q(L~I;Uk) - QCI~lj.jUk) where"J is, the weight associated with bj If
the importance weights are not normalised such that Lj'l JWj = I, then a; = Q(Lk~I,uJ!Lkol JUI) ­

Q(L~I j_1UJL~1JUk). Label(OWAo(<P'I' <P", , <Pu)) yields a linguistic expression of
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