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The role oftraffic signals is evolving to include people-oriented as well as vehicle-oriented
objectives.. Future signal control systems will need to handle a wide range of input types
as improved models (eg for cyclist and pedestrian bebavior) and other objective functions
(eg for environmental concerns) become available Fuzzy logic systems can be built to
handle existing vehicle-based objectives and aTe readily extendable using the hiermchical
approach. Some fuzzy logic traffic signal control systems based on vehicle-oriented
objectives have been built and tested against simulated models since 1977. I wo of the more
recent efforts produced at the Iransport Operations ReseaTch Group, University of
Newcastle upon I yne UK, were designed to incorporate policy··sensitive objectives in the
future but tuning the systems proved time-consuming and tedious.. Automatic optimisation
techniques were sought and genetic algorithms were proposed as a possibility.. 'Ihis paper
discusses the elements of fuzzy logic systems and pinpoints those that could be optimisable
lIsing genetic algorithms Methods applicable to optimising fuzzy logic traffic signal
control systems offline are suggested
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Introduction

In recent years there has been a paradigm shift in the role of traffic signals towards
actively managing road traffic networks to include people-oriented as well as vehicle­
oriented objectives Ihe need for policy objectives ranging beyond catering for motor
vehicle movement efficiencies has been recognised politically (Routledge, Kemp and
Radia 1996) largely as a result of growing public awareness of the environmental
impact of road traffic. Many authorities are now pursuing policies to:

manage demand and congestion;
influence mode and route choice;
improve priority for buses, trams and other public service vehicles;
provide better and safer facilities for pedestrians, cyclists and other vulnerable road

users;
reduce vehicle emissions, noise and visual intrusion; and
improve safety for all road user groups

In the UK this led to the establishment of the five-year government-funded research and
development effort towards Urban Iraffic Management and Control (UIMC) systems
An explanation of the differences between the projected UTMC systems and the older
Urban Traffic Control (UTe) systems can be found in Clement, Bell, Cassir and Grosso

(1997a)

Fuzzy logic control systems for traffic signals have been reported sporadically since the
efforts of Pappis and Mamdani (1977). Furrher efforts have followed including
Nalratsuyama, Nagabashi and Nishisuka (1983); Brubalrer and Sheerer (1992); Chiu and
Chand (1992); Hoyer and Jumar (1994); Lee, Lee and Leekwang (1994); Janecek and
Zargham (1995); Jerabek and Lachiver (1995); Izes, McShane and Kim (1995); Ho
(1996); and Zbou, Wu, Lee, Fu and Miska (1997) Until recently all of rhe systems
applied to intersections were designed to minimise disruption to the flow of motor
vehicles using traditional measures such as reduction in delays

Before the UIMC strategy was unveiled, the I ransport Operations Research Group
(IORG) at the University of Newcastle upon Iyne, England, had begun developmentaf
a fuzzy logic (FL) system as a means of optimising and controlling traffic signals Ihis
system was designed to incorporate broad policy objectives into the operational
mechanism (Sayers, Bell, Mieden and Busch 1996) but these had not been implemented
at time of publication A variation on this work was completed by Senoner (1997) who
based his system on the ideas of Lee, Lee and Leekwang (1994) Initial tests were
promising but the tuning of such a system was time-consuming and hence a method for
optirnising such a controller was sought

Optimisation using genetic algorithm (GA) technology was a possibility A GA is
optimisation and search tool that uses probabilistic search methods based on ideas from
natural genetics and evolutionary principles (Clement 1997b) GAs are regarded
general purpose and robust Various methods for using GAs to optimise FL systems
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Optimising fuzzy logic traffic signal control sy.stem,

have been applied to fields as diverse as water level control, semi-active vehicle
suspension systems and space-based oxygen production systems

Many FL systems have been employed in realworld transportation applications
(Teodorovic 1994) but the Brubaker and Sheerer (1992) system was the only instance
found in the literature of FL applied directly to traffic signals The system of Zhou et al
(1997) used an FL system to classify traffic situations Each situation was then used to
define parameters for the signal system which used conventional controllers The other
FL systems for signals listed above were built and tested under simulated traffic
scenarios ranging from the very stylised in the early examples to close approximations
to realworld situations in the later instances Most were optimised for vehicle-oriented
objectives such as reduction in delays. rhe system developed by Sayers et al (1996) is
designed specifically for realworld application and has the potential to include other
objectives The Senoner (1997) system was tested on a realistic four-intersection
simulated network and worked well but would be expensive to implement due to its
need for many vehicle detectors.. None of the FL signal control systems incorporated
automatic optimisation of the fuzzy logic parameters though there are many instances in
the literature of GA-optimised FL systems for other control applications See Cordon,
Herrera and Lozano (1996) for a classified review and Clement (I 997c) for a discussion
qfsome of these systems

ihis paper contains ideas, methods and possible starting points for the development of
genetic algorithm-optimised fuzzy logic systems applied to adaptive traffic signal
ontml An explanation of the elements of a fuzzy logic system is given by taking the
xample of Brubaker and Sheerer (1992) The reader is given an understanding of the
orkings of FL systems before the opportunities for and ramifications of optimising FL

ystems offline are discussed. Finally some suggested approaches to applying GA­
ptimised Ft systems to traffic signal control are given

genera] most control systems function by monitoring the control problem
yironment and then reacting appropriately by outputting instructions to one or more
vices that influence that environment Ihis measuring inputs and producing outputs
ocess is continual

zy logic control systems are no different in their overall aims but are unique in the
used to effect control FL set theory is an extension of classical set theory in

describes set membership in terms closely linked to natural language rather than
usual binary descriptions of either belonging to or not belonging to a set. Terms

long, short, high and low are subjective and therefore open to differing
!1.erpre:tatiOlrs by a range of people. These ~an be handled by ftizzy logic where a

of 'belongingness' to a fuzzy set is assigned to a value of an input variable For
Australia would be regarded by almost all people as being a big country
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Defuzzification
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The Brubaker and Sheerer (1992) system was a practical application used to control
signals of an onramp to a freeway This example, with some simplifying
for clarity, is used here to describe the elements of FL systems and thus highlight
for possible optimisation The inputs to the system were the density and speed of

freeway traffic

Input variables, fuzzy sets, membership functions and fuzzification

Input variables are usually evident from the type of environment to be controlled
example traffic signals would have inputs to cater for vehicular traffiC,
pedestrians, transit pridrity ete We refer to the range of possible values for an
variable as the universe of discourse In Figure 2 the universe of discourse

Density variable is 0-1 0 and denoted by X
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Figure 1 Fuzzy logic conceptual model
The crisp input values (eg length of queue, elapsed time since last green) are changed
fuzzy values through fuzzification and assigned to intermediate variables The
inference stage then fires appropriate rules of the rulebase depending on the
values of the intermediate variables Traclitional knowledge-based control
contain a set of rules one of which is fired and acted upon depending on the
received: thus one rule is fired completely In an FL system more than one rule
rulehase can be fired simultaneously ie due to the same input values Moreover each
these fired rules does so to a degree in the range (0, I] where the value I
complete firing. In the defuzzification stage the degree of firing is translated into
values fO! each consequent of each of the fired rules then these fuzzy values
combined into one or more crisp values which can be used by the control

of the environment to he controlled

Tbe broad processing steps of a fnzzy logic system are shown in Figure I along with
changes in types of data (crisp -> fuzzy ete) effected by the FL elements

whereas most Australians would regard Spain as a medium-sized country in contrast to
many Europeans who would regard Spain as a big country. Fuzzy logic would
this by assigning a degree of membership for Spain in each of the big and medium fuzzy
sets FO! a complete description of FL see McNeill and Freiberger (1993) and for a
concise explanation of the mathematical description of fuzzy logic see Fedrizzi and

Kacprzyk (1995)
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Output variables, rhe mlebase, fuzzy inferencing and defuzzification

x10080

fast

60

Speed (mph)

Speed
~(speed)'IOw(17)= 03
~(speed)m'di"m(17)= 0.48

40

mediumslow
<
310~-~

"~
,g

13 048·.....,e--~

:" 0 3
c

~
Cl 20

speed = 17

Density

~(densitY)h""Y(O35) = 025
~(densitY)m'di"m(0.35)= 0.75

The fuzzification process is carried out for each input variable whenever required by
sampling and control process The fuzzified values are used in the fuzzy or
inferencing process which is governed by the contents of the Iulebase and

inferencing method chosen

Clearly the membership functions have a bearing on the fuzzification process If the
lines of the functions are in different positions then different degrees of membership
the same input value would result Therefore optimising the position and shape of
membership functions is possible Other membership function geometries can be
and where there is choice there is an opportunity for optimisation Many FL systems
a membership function based on a curvilinear function. For example a memt>ership
function based on a distribution in the normal family could be described by the
and the variance Quadratic functions can also be used

Output variables are, like the input variables, usually constrained by the en'vin)nnlOnt
be controlled For example the ourputs from a traffic signal control system
essentially be redlight and greenlight duration Output variables are described
sets in a similar manner 'to input variables and therefore the number of fuzzy
each output variable and the membership function for each set are optimisabl

e

fuzzy sets and their membership functions shown in Figure 4 are taken
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Table 1 Fuzzified example iuput values of density and speed

Figure 3 Fuzzification of speed value

The input value of a speed of 17mph was used in the fuzzification process on the fuz
sets and their membership functions of Figure 3 to produce the fuzzy degrees ~
membership values contained in Table 1 0



Optimisingfuzzy logic traffic signal control systems

rubaker and Sheerer system For example purposes the duration of both the red and
reen lights has been limited to 20 seconds

Rules have the form
ifantecedent, AND antecedent, AND antecedent" then consequent,; consequentm

where the antecedents refer to the fuzzy sets of the input variables and the consequents
tefer to the fuzzy sets of the output variables

The rulebase matrix for our example is shown in I able 2

Rulebase matl ix

eed Slow Medium Fast
constancon constancon constant_on
medium long constanCon
short medium long

The resultant rules are given in I able 3 which also shows which rules are fired through
the first part of the process known as fuzzy, or output, inferencing Ihis is done by
processing each rule as if it were an ordinary Boolean if statement and by applying the
condition of nonzero degree of membership to each of the antecedents (see Table 1 for
relevant values)

Rule table

5
6

7

Rule instructions
ifDensity is heavy AND Speed is slow then Duration is short
if Density is heavy AND Speed is medium then Duration is medium
ifDensity is heavy AND Speed is fast then Duration is long
if Density is medium AND Speed is slow then Duration is medium
if Density is medium AND Speed is medium then Duration is long
if Density is medium AND Speed is fast then Duration is
constanCon
if Density is light then Duration is constant on

Fired?
y
y

y
y

The next problem is to work out the degree of firing of each of the fired rules Take
Rule 4 which uses the AND operator Ihis is the fuzzy AND operator that extends the
1300lean meaning used in the first part of fuzzy inferencing. By convention the fuzzy
AND directs us to take the minimum of all the degree of membership values on the
antecedent side of the rule Hence we apply the fuzzy values for density and speed,
J.L(densitY)moo'"m(0.35) = 075 and J.L(slow)""J17) = 03 respectively, and therefore take
min(075, 03) and say that Rule 4 is fired to degree 03 More conveniently it is written
as J.Lmoo,,,.(Ru]e 4) = 0 3.. If the OR operator were used in the rules then the convention is
to take the maximum of the two values

FOllowing the same procedure for the other fired rules we have the following:
J.L."JRule I) = 0.25, J.Lm~;"m(Rule 2) = 0.25, J.Lmoo'"m(Rule 4) = 0.3, /J,,,,,,(Ru]e 5) = 0.48
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The second choice is how to deal with the resultant shapes to arrive at the final
output value Several methods are available such as weighted average, centre of
Yager's method, centre of largest area and the mean of maxima method (Senoner
In addition, if the centre of gravity method is used, the clipped or scaled ar'eas can

unioned or summed

In this example, the centroids of the clipped regions (2 8, 60, 60, 13 5 seconds
shown in Figure 4) are applied to the weighted average procedure to produce

resultant green duration:

D
. 0.25*2.8+0.25*6.0+0.3*6.0+0.48*135 8.2,

uratwn ::::: 025+025+03+048

The same process is used to find the red dUlation though a different IUlebase is
hence the red dUlation rime is highly likely to differ from the green duration time

904

Figure 4 Mapping of fuzzy values to ontput fuzzy sets using the clipping method

There are several choices to be made in the defuzzification process and these can
grouped into two parts The first choice determines the shape of the fuzzy set after the
mapping process: the choice is between clipping or scaling Figure 4 shows the
method See Clement (1997c) for a description of other methods, in particular
scaling method Note that the mapping of the degree of firing of Rule 2 onto
medium fuzzy set is not shown in FigUle 4 as its results are subsumed by the mapping

the Rule 4 firing

The defuzzification process maps each of these fuzzy values onto the relevant output
variable fuzzy set (see Figure 4) and then combines the mappings to produce a cris
value used by the mechanisms in the control system itself p
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Ihe rulebase

Fuzzy inferencing and defuzzification

82 59
]]4 86
83 60

10.8 7.8

Duration
Green Red

Defuzzification
Part 1 Part 2

Fuzzy logic systems are very forgiVing to the designer in that they will generally work
reasonably well even though a processing style decision may not be optimal For
example the weighted average method requires centroids to be taken .. If the output fuzzy
Set membership functions are geometrically isosceles then the degree of firing of the
relevant rule is of no significance since the centroid will always lie on the same x-axis
Value. Under these conditions the interpretation to be placed on the AND and OR
operators of the rulebase is unimportant as the same values will be produced either way
This also applies to whether clipping Or scaling is used In reality membership functions
are commonly determined by a process of trial and error (or sometimes through
optimisation) and seldom remain isosceles But this property is useful for checking the
output of an FL system during initial building and testing

Considerations for optimising fuzzy logic systems

The number of fuzzy sets associated with each input variable impacts heavily on the
structure and size of the rulebase.. A simple rulebase consists of rules of the form:

if (x, is A) AND (x, is B,) then (y, is C)

If each of the input variables were described by three fuzzy sets then the rulebase would
complete if populated by nine rules. If each of the inputs were then described by five

fuzzy sets the rulebase would comprise 25 rules Clearly more input variables would
require more rules though it is likely that some of these rules would be redundant in a
practical application See Iable 3 Where three possible rules (all apply to light traffic
density) are covered by Rule 7

Optimi.singfuzzy logic traffic signal control f)',stems

pte that the ratio of red time to green time for each of the four combinations shows
'tie variation . { Extend the table to include the ratio values. }

9lipping weighted average
centre of gravity

~~aling weighted average
centre of gravity

("hoice of methods can produce differences in output values and this is illustrated in
[able 4 where green and red duration values for the example are calculated for all
'9mb

inations of two choices for each of the two parts of the defuzzification process

rable 4 Defuzzification choices and outcomes
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There are many instances in the literature of GAs being used to optimise Fl systems
(see Cordon, Henera and Lozano (1996) for a classified review) Most of these refer
optimisations performed on the mlebase, the fuzzy sets and their membership furlcti,ons
simultaneously. Some GAs optimised the membership functions of the input var·iar,l"
only while others optimised the membership functions of both input and
variables. There were no instances found in the literature where optimisation included
choice of fuzzy inferencing metbod and defuzzification technique: these choices
be easy to code into a GA but would require the FL system to have the methods

implemented

One possibility is to iteratively tune the FL system for each of its elements in turn
the first optimisation could be for the number of fuzzy sets for each of the
variables, the membership functions (geometry) and the rulebase: the output vaJriat,les,
the fuzzy inferencing method and defuzzification technique having been ten,pclfariily
selected or designed.. After suitable optimisation, the fuzzy sets, membership furlctions
and mlebase could be built from the best chromosome of the GA The input variables'
fuzzy sets and membership functions would then be fixed and GA optimisation
be performed for the output variables' fuzzy sets, the membership functions and
rulebase again .. Optimising for the rulebase would be required since a change rn
number of fuzzy sets of th<> output variables impacts on the consequent side of the
The input side could then be reoptimised using the optimised output side parameters

Assuming for the moment that the stmcture of the rulebase is fixed (ie for each rule
number of antecedents and the number of consequents are constant) and the ge(lm,:tric
type of the membership functions is fixed (eg triangular/trapezoid only) then the
of elements of the FL system being optimised with one GA impacts on the length
chromosome used. to represent the FL element parameters, The more elements
optimise the greater the length of the chromosome This in turn impacts on
effectiveness of the GA operators as well as the processing time usually needed due
the increased GA population requirements (Clement 1997b) Therefore alternatives
single GA optimisation are likely to be necessary

Automatic optimisation using genetic algorithms

It is clear that nearly all of the elements of an FL system could be optimised
automatically Assuming that the numbers of input and output variables is fixed then the
following elements are possibilities for optimisation:
• the number of fuzzy sets representing the linguistic meaning of each of the input and

output variables;
• the mlebase itself;
• the membership function of each of the fuzzy sets of each of the input and OUlput

variables;
• the fuzzy inferencing method; and
• the defuzzification technique
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AllterrlaIl ve rulebase structures

Optimising fuzzy logic t1a.ffic signal contlol systems

addition there are some circumstances when entire rules are redundant and Zizka
reported considerable success by limiting the numbel of rules in the rulebase

output side optimisation would be performed This process could continue until
ch,mg,es to all parameters become minimal or for a set number of optimisation cycles

assumption was made above that for each rule the number of antecedents and the
Ilmmb,or of consequents were constant. Ihis need not be the case as Some of the input

of FL systems can be omitted from some rules in some circumstances
(H,)flrnarm and Pfister 1995; Klungboonkrong 1997), hence the number of antecedents

change The impact of this is again on the chromosome string length which can
therdore vary depending on the size of the rulebase and the structure of the rules This

problems for the conventional GA reproduction operators since the position of the
Cf()SS'OV'" point must occur between set boundary limits governed by the length of the

way of overcoming this is to use the so-called messy GA technology With messy
more complex operators are needed to recombine the chromosome string into a

Se"SIIDle structure after the croSsovel operation. Hoffmann and Pfister (J 995) use cut and
operators which use extra information, contained within the chromosome, about

context of a section of code Examples of sections of code are rules, fuzzy set names
membership functions

OJ>jectivefunctions and optimisation techniques

Difti,;ulties of extending objective functions

initial point made in this paper was that the range of objectives for traffic signals is
IJ",;onnin.g much broader than in the past The anticipated range is far wider than the

currently encompassed by the models commonly used in contemporary traffic
control. Some of the difficulties of inclUding other objectives in the optimisation

Objective function of an analytical approach are described in Ihompson-Clement and
(J996) Where an attempt was made to integrate a 'stand-alone' fuel consumption
with the other optimisation objectives, Ihis fuel consumption model was not a

de,riv"ti,'e of vehicular delays or stops but used the traffic data as direct inpur to its
'ponstitu,ent analytical processes Similar comments of integration difficulties apply to

models such as NetNoise (Woolley 1997) which also utilises direct dara input

GA requires a method to assess the fitness of the individuals of its changing
\rnifollgh reproduction) population (the individuals contain the parameter information for

~'''V'LC of optimisation technique



The classification approach

Whether to use an analytical method or a simulation method ultimately depends on
quality of the models used, more practically on the availability of the models and
on ease of implementation as the objective function of a genetic algorithm

I
I

(

r
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It has become generally accepted that a failing of the signal control systems cmrently
use (eg SCATS, SCOOT) is that they try to impose similar phasing and
constraints over a wide area due to inflexible optimisation goals It is recognised
such restraints may be in order for some intersections but not for others in a
area of the network Therefore systems of the type suggested by Clement (1997b)
developed by Senoner (1997) may be more suitable for a wide range of sites
these systems are essentially single intersection controllers Network optirn'isation
considerations are effected through communication with their neighbouring cOlotrc)lle,rs,
These systems have the potential to be much more flexible in two significant
Firstly optimisation objectives can be set for the local environment (not all
objectives would be required at each intersection) and are easily altered
circumstances, Secondly these systems are designed to produce very flexible
and timing arrangements not easily available to the controllers of today
modifications to SCATS and its derivatives has achieved such arrangements as
phasing Another approach was taken by Zhou et al (1997) who used an FL
classify traffic situations Operating parameters were then set for each of these
and control was then leFt to conventional controllers which recognised nmiicu1ar
situations and changed parameter sets accordingly" The method of classifying
then tuning Ft system parameters to each class appears to be the most promising

the FL signal controller) Two assessment methods are (1) to use analytical models
(2) to use a simulation model Assume fOI the moment that a complete set of
reflecting all policy objectives exists fOI analytical models and have been embedded
the chosen simulation model Which to use? Analytical models have been used
optimise traffic signals using genetic algorithms (Clement 1997b) and
models have been used as test-beds for all the fuzzy logic signal control
reported in this paper The simulation method has a drawback in that it would tak
considerably longer to process each individual in the GA population than would e
analytical model Advantages of the simulation method are that the work can
performed using the same input data for successive tests of alternative systems [1'1''''''0
and Niittymiiki 1996) and that system parameters can be altered dming a processing
without having to restart the system Further, simulation occms in the laboratory
no disruption to the system being tested and usually there is a large amount of
data available from which calculations of various performance measures can be
Measures such as the average delay of vehicles, length of queues, amount of ernlissionls,
fuel consumption and percentage of stopped vehicles can be drawn (Pmsula
Niittymiiki 1996) One of the arguments against the simulation method is that
outputs are given as a form of average and could be misleading.. In addition sinmlaticm
models are usually expensive though in some instances the expense is contained
in the cost ofthe hardware needed to run the model to a workable speed

Clement
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further complication arises when one considers the number of inputs needed for
signal control Clearly many inputs are needed and more will be needed when the
of objectives is extended. The major effect of many input variables is that the

nm~her of rules increases algebraically with the number of input variables (Hoffmann
Pfister 1995) hence the GA chromosome string required for optimisation would

onic"'" become very long thus increasing the time required for a GA processing run,

Optimisingfuzzy logic traffic signal control s:ystems

Hie"'l'cllIical fuzzy logic systems

would depend on finding an efficient method for classification that would include the
policy-sensitive objectives discussed earlier ie encompass the traffic and network user
approach .. It would also depend on developing an effective way of easily tuning the FL
sys,tenas to each of these classes

ArlOther consideration is that with two input variables it is easy to visualise the fuzzy
surface in three dimensions and a graphical visualisation feature is de rigeuT for

contem]Jorary FL construction environments. See Clement (1997c) fOl examples of
surfaces taken from the SieFuzzy demonstration program

EFii!!Ul". 5 The Senonel' fuzzy logic traffic signal control model showing the
,!!lii~r:'l'chi(,al modulal' approach laken

method to counter the large rulebaselbig GA chromosome problem and to make
!!!lllilnual tuning of the fuzzy system easier is to build a hierarchical FL system (Hoffmann

1994; Sayers et al 1996) The modular and hierarchical ideas of the Sayers
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model were extended by the system of Senoner (1997) and the schematic of Figu
shows the layering of the complete scheme into several FL systems each of whichre 5
be tuned independently Note the use of intermediate variables used as can
between the various modules and how one {near input is fed into RE5, a second
rulebase

Essentially each rulebase (eg RE4) of Figure 5 along with. its inputs and output is
representatlve of an FL system The meamng of each mput varIable is explained fUlly
Senoner (1997) along wIth the methods by whIch the system works The input varIablle,
include the number of cars waiting (near), the elapsed time since the last green light
(eltime), the time remammg before the ltkely arnval of the upstream platoon of
(sytime), the number of vehicles in the link leading to the downstream int:e",ect:ion
(fncar), the number of outgoing vehicles for the last five seconds per lane (outcar)
the number of remaining vehicles in the lane (mcar) The Senoner system operates on
competition for green time between the traffic streams of an intersection

Examples of the saving in rulebase size are contained in Clement (l997c)

Conclusions

The future direction of signal control is towards including policy-sensitive oh,pr',v,"

the optimisation process and for systems that are flexible to the local environment
each intersection Fuzzy logic signal control systems appear to be well-suited to
problem when tested under laboratOIy simulation conditions and using comnmn,ication
between neighbouring contlollers as the means for network optimisation Despite
laboratory successes only one system of those reported has been applied to a p",cti,:.]

situation

Tuning the fuzzy logic systems is usually carried out by trial and error and is
tedious operation Genetic algorithm technology is a possibility for aUIlOITLatlC
optimisation of the setup parameters and methods of fuzzy logic systems
parameters include the numbers of fuzzy sets for the input and output sides
membership functions themselves The choices of methods are for the fuzzy inf'erencing
method and for the defuzzification technique. The size of the rulebase could
heavily on the performance of the GA optimiser and hence limits on the
number of fuzzy sets may have to be imposed There are many instances of
algorithm-optimisation of fuzzy logic systems but none of those reviewed
literature were applied to traffic signal control

The suggested approach is to classify traffic and network user demand situations
a different FL setup could be applied to each Optimisation - which would
broad range of objectives required of future signal systems - would then aim to

fuzzy logic parameters and processing choices fm each of these classes
optimisation of the elements of the fuzzy logic system is suggested.
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Optimi,sing fuzzy logic traffic signal control systems

The choice of using simulation or analytical techniques depends On the accuracy of the
affordable models and the ease with which the chosen option can be implemented as the
objective function of a genetic algorithm
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