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© Abstract;

The role of traffic signals is evolving to include people-oriented as well as vehicle-oriented
‘objectives. Future signal control systems will need to handle a wide range of input types

improved models (eg for cyclist and pedestrian behavior) and other objective functions
{eg for environmental concerns) become available Fuzzy logic systems can be built to
handle existing vehicle-based objectives and are readily extendable using the hierarchical
approach. Some fozzy logic traffic signal control systems based on vehicle-oriented

bjectives have been built and tested against simulated models since 1977 Two of the more
recent efforts produced at the Iransport Operations Research Group, University of
Newcastle upon Tyne UK, were designed to incorporate policy-sensitive objectives in the
future but tuning the systems proved time-consuming and tedions. Automatic optimisation
techniques were sought and genetic algorithms were proposed as a possibility. This paper
scusses the elements of fuzzy logic systems and pinpoints those that could be optimisable
sing genetic algorithms Methods applicable to optimising fuzzy logic traffic signal
ntrol systems offline are suggested
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Introduction

In recent years there has been a paradigm shift in the role of traffic signals towards

actively managing road traffic networks to include people-oriented as well as vehicle-

oriented objectives. The need for policy objectives ranging beyond catering for motor

vehicle movement efficiencies has been recognised politically (Routledge, Kemp and

Radia 1996) largely as a result of growing public awareness of the environmental

impact of road traffic. Many authorities are now pursuing policies to:

—  manage demand and congestion;

_  influence mode and route choice;

—  improve priority for buses, trams and other public service vehicles;

~  provide better and safer tacilities for pedestrians, cyclists and other vulnerable toad |
users;

—  redoce vehicle emissions, noise and visual intrusion; and

—  improve safety for ali road user groups

In the UK this led to the establishment of the five-year government-funded research and
development effort towards Urban Traffic Management and Control (UTMC) systems. -
An explanation of the differences between the projected UTMC systems and the older

Utrban Traffic Control (UTC) systems call be found in Clement, Bell, Cassit and Grosse -

{1997a)

Fuzzy logic control systems for traffic signals have been reported sporadically since the
efforts of Pappis and Mamdani (1977). Further efforts have followed including
Nakatsuyama, Nagahashi and Nishisuka (1983); Brubaker and Sheerer (1992); Chiu and
Chand (1992); Hoyer and Jumat (1994); Lee, Lee and Leckwang (1994); Janecek and
Zargham (1995} Jerabek and Lachiver (1995); Tzes, McShane and Kim (1995); Ho .
(1996); and Zhou, Wu, Lee, Fu and Miska {1997). Until recently all of the systems
applied to intersections were designed to minimise disraption to the flow of motor
vehicles using traditional measures such as reduction in delays

Before the UTMC stategy was unveiled, the Transport Operations Research Group -
(TORG) at the University of Newcastle upon Tyne, England, had begun development of
a fuzzy logic (FL) system as a means of optimising and controlling traffic signals This -
system was designed to incorporate broad policy objectives into the operational
mechanism (Sayers, Bell, Mieden and Busch 1996} but these had not been implemented
at time of publication. A variation on this work was completed by Senones {1997) who
based his system on the ideas of Lee, Lee and Leekwang (1994) Initial tests were
promising but the tuning of such a system was time-consuming and hence a method for i
optimising such a controller was sought '

Optimisation using genetic algorithm (GA) technology was a possibility A GAisan’
optimisation and search tool that uses probabilistic search methods based on ideas from
natural genetics and evolutionary principles (Clement 1997b). GAs are regarded

general purpose and robust. Various methods for using GAs 10 optimise FL systems
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have been applied to fields as diverse as water level control, semij-active vehicle
suspension systems and space-based oxygen production systems,

“scenarios ranging from the very stylised in the early examples to close approximations
o realworld situations in the later instances Most were optimised for vehicle-oriented

“objectives such as reduction in delays. The system developed by Sayers ez af (1996) is
‘designed specifically for realworld application and has the potential to include other
objectives. The Senoner (1997) syste

simulated network and worked well b

points for the development of
ed to adaptive traffic signal

-general most control systems function by monitoring the control problern
vironment and then reacting appropriately by outputting instructions o one or more
Vices that influence thas environment. This measuring inputs and producing outputs
0Cess is continual

Fu_Z_Zy logic control systems are no different in their overall aims but are unigue in the
thods used to effect control. FL set theory is an extension of classical set theory in
tha___ it describes set membership in terms closely linked to natural language rather than
e usnal binary descriptions of either belonging to or not belonging to a set. Terms
has long, short, high and low are subjective and theref‘c»re' open to differing
Cipretations by a range of people. These can be handled by fuzzy logic where a
¢ of *belongingness’ to a fuzzy set is assigned 1o a value of an input variable For

miple Australia would be regarded by almost all people as being a big country
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whereas most Australians would regard Spain as 2 medium-sized COURtTy il Contrast to |
many Europeans who would regard Spain as a big country. Fuzzy jogic would handle
this by assigning 2 degree of membership for Spain in each of the big and medium fozzy -
sets For a complete description of FL see McNeill and Freiberget (1993) and for a
concise explanation of the mathematical description of fuzzy logic see Fedrizzi and
Kacprzyk (1995) '

The broad processing steps of a fuzzy logic system are shown in Figure 1 along with the :
changes in types of data (crisp -> fuzzy etc) effected by the FL elements. =

Membership
. Rulebase
Functions -
i ‘i

@m\ Fuzzy Inferencing

fuzzy

cIisp

Figuxe 1 Fuzzy Jogic conceptual model

The crisp input values {(eg length of queue, elapsed time since last green) are changed e
fuzzy values through fuzzification and assigned to intermediate variables The fuzzy
inference stage then fires appropriate rules of the rulebase depending on the fuzzy:
values of the intermediate variables. Traditional knowledge-based control systems:
contain a set of rules one of which is fired and acted upon depending on the inputs:
received: thus one rule is fired completely. In an FL system moie than one tule of 2.
rulebase can be fired simuttaneously ie due t0 the same input values Moreover each of
these fired rules does S0 0 2 degree in the range (0,1] where the value 1 denotes
complete firing In the defuzzification stage the degree of firing is translated into fuzzy
values for each consequent of each of the fired rales then these fuzzy values are:"
combined into one of mMOLE crisp values which can be used by the control mechanisms
of the environment to be controlled L

The Brubaker and Sheerer {1992) system was a practical application used to control th?--
signals of an onramp to a freeway. This example, with some simplifying modifications:
for clarity, is used here to describe the elements of FL systems and thus highlight areas.
for possible optimisation The inputs to the system were the density and speed of the
freeway taffic

Input variables, fuzzy sets, membership functions and fuzzification

Input variables are usually evident from the type of environment to b
example uaffic signals would have inputs to cater for vehicular teaffic, _
pedestrians, transit pricrity elc We refer to the range of possible values for an jnput
variable as the universe of discourse. In Figure 2 the universe of discourse &7 %
Density variable 18 0-1.0 and denoted by X. :

pollutic_)n{
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“The fuzzy sets which describe the input variable in linguistic terms over the universe of
“discourse are chosen. In the example of Figure 2 the fuzzy sets are light, medium and
.' heavy. Note that each fuzzy set spans the universe of discourse There is no theoretical

estriction on the maximum number of fuzzy sets used for each input variable.

ntuitively three would be the minimum Therefore the number of fuzzy sets is a
“capdidate for optimisation In practical terms a large number of fuzzy sets impacts
“heavily on the size of the rulebase and increases the complexity of manually tuning the

FL system. Therefore setting an upper limit on the possible number of fuzzy sets would
“be practical.

fuzzy sets and their
membership functions

v .

light medivm

REANEIVAN

L L ¥ i I 1

62 04 0.6 0.8
density = .35

' Dégreé of Me1ﬁbershiﬁ {u(x)) ;

Density (veh/unit space)

:Figur‘e 2 Assigning degrees of membership, u(x) to Density

:The process known as fuzzification takes the crisp input value and translates it to a
zzy value called the degree of membership, [(x), over the range [0,1] in the fuzzy sets
he membership functions of the fuzzy sets of Figure 2 reflect how traffic engineers
ay differ in their description of traffic density values or alternatively what ranges of
alues constitute light, medium and heavy density. Some engineers might say a density
f 0.35 is medium while others say it is heavy. Note that even though the maximum

degree of membership possible is unity, for any given input value the degrees of

membership do not have to total unity.

Figure 2 illustrates how fuzzification is performed for a density of 035 The result is

‘that we say the density value of 0.35 has a degree of membership of 0 25 in the heavy

fuzzy set and a degree of membership of 0.75 in the medium fuzzy set This is more
onveniently written: p(densityrean(0 35} = 0.25 and J{density megum(0 35y = 0.75

hough for completeness f{density)ua(0.35) = 0.0 is true, it takes no further part in the

fMzzy process
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The input value of a speed of 17mph was used in the fuzzification process on the fuzzy
sets and their membership functions of Figure 3 to produce the fuzzy degrees of
membership values contained in Table 1.

slow medium

Degree of Membership ((x))

speed = 17 20
Speed (mph)

Figure 3 Fuzzification of speed value

Tablel Fuzzified example input values of density and speed

Density Speed
p(densityneavy(0 35)=025 u(speed)aow(17) = 03
u(density)medium(O.BS) =0.75 }_L(speed)medium(li") =048

Clearly the membership functions have a bearing on the fuzzification process Tf the -
lines of the functions are in different positions then different degrees of membership for -
the same input value would result. Therefore optimising the position and shape of the.

membership functions is possible Other membership function geometries can be used

and where there is choice there is an opportunity for optimisation. Many FL systems use".
a membership function based on a curvilinear function. For example a membership
function based on a distibution in the normal family could be described by the mean .
and the variance. Quadratic functions can also be used. :

The fuzzification process is carried out for each input variable whenever required by the
sampling and control process The fuzzified values are used in the fuzzy of outpy
inferencing process which is governed by the contents of the rulebase and the.
inferencing method chosen. '

Output variables, the rulebase, fuzzy inferencing and defuzzification

OQutput variables are, like the input variables, usually constrained by the environment

would:

be controlled. For example the outputs from a traffic signal control system y
v A
ot

essentially be redlight and greenlight duration Qutput variables are described by f
sefs in a similar manner to input variables and therefore the number of fuzzy sets
each output variable and the membership function for each set are optimisable. The
fuzzy sets and their membership functions shown in Figure 4 are taken from the




Optimising fuzzy logic traffic signal conrol systems

rubaker and Sheerer system. For example purposes the duration of both the red and
green lights has been limited to 20 seconds

Rules have the form
if antecedent, AND antecedent, AND . antecedent, zhen consequent; . consequent,
here the antecedents refer to the fuzzy sets of the input variables and the consequents

r to the fuzzy sets of the output variables

he rulebase matrix for our example is shown in Table 2
Rulebase matrix

Slow Medium Fast
constant_on constant_on constant_on
medium long constant_on
short medium long

e resultant rules are given in Table 3 which also shows which rules are fired through
the first part of the process known as fuzzy, or output, inferencing This is done by
processing each rule as if it were an ordinary Boolean if statement and by applying the
'a_;dhdition of nonzero degree of membership to each of the antecedents (see Table 1 for

elevant values)

Table3  Rule table

‘Rule  Rule instructions

=1 if Density is heavy AND Speed is slow #hen Duration is short
if Density is heavy AND Speed is medium then Duration is medium
if Density is heavy AND Speed is fast then Duration is long
if Density is medium AND Speed is slow ther Duration is medinm
if Density is medium AND Speed is medium then Duration is long
if Density is medium AND Speed is fast then Duration is
constant_on
if Density is light then Duration is constant_on

The next problem is to work out the degree of firing of each of the fired rules Take
le 4 which uses the AND operator This is the fuzzy AND operator that extends the
Boolean meaning used in the first part of fuzzy inferencing. By convention the fuzzy
AND directs us to take the minimum of all the degree of membership values on the
antecedent side of the rule Hence we apply the fuzzy values for density and speed,
{density), .. (0.35) = 0.75 and p(slow),, (17) = 0.3 respectively, and therefore take
mm(O 75, 0.3) and say that Rule 4 is fired to degree 0.3. More conveniently it is written
sl (Rule 4) = 0.3, I the OR operator were used in the rules then the convention is
10 take the maximum of the two values

; Following the same procedure for the other fired rules we have the following:
LRule 1)=025,u_ . (Rule2) =025, (Rule4) =03, (Rule5)=048

‘madinm medium ony
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The defuzzification process maps each of these fuzzy values onto the relevant ougput i
variable fuzzy set (see Figure 4) and then combines the mappings to produce a crisp .
value used by the mechanisms in the control systemn itself.

short medium long

"

Centroids

Degree of Membership (B(x))

10 135 0 X
Duration (8)

Figure 4 Mapping of fuzzy values to output fuzzy sets using the clipping methed

There are several choices to be made in the defuzzification process and these can be
grouped into two parts. The first choice determines the shape of the fuzzy set after the :
mapping process: the choice is between clipping ot scaling. Figure 4 shows the clipping’
method. See Clement (1997¢) for a description of other methods, in particular the
scaling method Note that the mapping of the degree of firing of Rule 2 onto the .
medium fuzzy set is not shown in Figure 4 as its results are subsumed by the mapping of '
the Rule 4 firing g

The second choice is how to deal with the resultant shapes to artive at the final ciisp
output value. Sever a1 methods are available such as weighted average, centre of gravity
Yager’s method, centre of largest area and the mean of maxima method (Senoner 1997).
In addition, if the centre of gravity method is used, the clipped or scaled areas can be:
unioned or summed -

in this example, the centroids of the clipped regions (2.8, 6.0, 60,135 seconds"a's.'
shown in Figure 4) are applied to the weighted average procedure to produce the

resultant green duration:
025%28+025%60+03*60+048 *135 925

025+ 025+03+048

Duration =

used and
hence the red duration time is highly likely to differ from the green duration time

The same process is used t© find the red duration though a different rulebase 18
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Considerations for optimising fuzzy logie systems

The rulebase

. The number of fuzzy sets associated with each input variable impacts heavily on the
7 structure and size of the ruiebase. A simple rulebase consists of rules of the form:

' F(x,is A) AND (x, is B) then (y,is C)
- If each of the input variables were de
- be complete if populated by nine rule
fuzzy sets the rulebase would comp
- require more rules though it is likel
. practical application See Table 3
. -density) are covered by Rule 7.

scribed by three fuzzy sets then the rulebase would
s. If each of the inputs were then described by five
rise 23 rules. Clearly more input variabies would
y that some of these rules would be redundant in a
where three possible rules (all apply to light traffic

Fuzzy inferencing and defuzzification

: Fuzzy logic systems are very forgiving to the desi
-Teasonably well

then the degree of firing of the

ill always lic on the same X-axis
value. Under these conditions the interpretation to be placed on the AND and OR

alues will be produced either way
d In reality membership functions
and error (or sometimes through

property is useful for checking the
ting

are commonly determined by a process of triaf

'Optimisation) and seldom remain isosceles But this

output of an FL system during initial building and tes

éh'dice of methods can

- Defuzzification Duration
Part 1 Part 2 Green Red
clipping  weighted average 82 59

centre of gravity 11.4 8.6
weighted average 83 6.0
centre of gravity 10.8 7.8

Ote that the 1atio of red time 10 green time for each of the four combinations shows
tle variation. { Extend the table 10 include the rasip values. }
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Automatic optimisation using genetic aigorithms
Initial methods

It is clear that nearly all of the elements of an FL system could be OPE'imised i
automatically. Assuming that the numbers of input and output variables is fixed then the
following elements are possibilities for optimisation: -
e the number of fuzzy sets representing the linguistic meaning of each of the input and
output variables;
the rulebase itself; :
the membership function of each of the fuzzy sets of each of the input and outpu{ '
variables;
the fuzzy inferencing method; and
s the defuzzification technique

There are many instances in the literature of GAs being used to optimise FL systeis -
(see Cordén, Herrera and Lozano (1996} for a classified review) Most of these refer to
optimisations performed on the rulebase, the fuzzy sets and their mernbership functions
simultaneously, Some GAs optimised the membership functions of the input variables -
only while others optimised the membership functions of both input and output:
variables. There were no instances found in the literature where optimisation included a
choice of fuzzy inferencing method and defuzzification technique: these choices would::
be easy to code into a GA bui would require the FL system to have the method

implemented :

Assuming for the moment that the structure of the rulebase is fixed (ie for each rule the
number of antecedents and the number of consequents are constant) and the geometric
type of the membership functions is fixed (eg triangular/trapezoid only) then the number:
of elements of the FL system being optimised with one GA impacts on the length of the:
chromosome used to represent the FL element parameters. The mote elements 0
optimise the greater the length of the chromosome This in turn impacts on th
effectiveness of the GA operators as well as the processing time usually needed due t0°
the increased GA population requirements (Clement 1997b) Therefore alternatives 10
single GA optimisation are likely to be necessary .

One possibility is to iteratively tune the FL system for each of its elements in turn. T
the first optimisation could be for the number of fuzzy sets for each of the input
variables, the membership functions (geometry) and the rulebase: the output variables
the fuzzy inferencing method and defuzzification technique having been tempofé}ﬂl
selected or designed. After suitable optimisation, the fuzzy sets, membership fm}c“"“
and rulebase could be built from the best chromosome of the GA The input variables
fuzzy sets and membership functions would then be fixed and GA optimisation would
be performed fos the output variables’ fuzzy sets, the membership functions af}d t
rulebase again. Optimising for the rulebase would be required since 2 change 10
number of fuzzy sets of the output variables impacts on the consequent side of the fﬂifd
The input side could then be reoptimised using the optimised output side parameters an
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finally output side optimisation would be performed. This process could continue until
.__'éhanges to all parameters become minima] o for a set number of optimisation cycles.

Alternative rulebase structures

. from some rules in some circumstances

(Hoffmann and Pfister 1995; Kiungboonkrong 1997), hence the number of antecedents
n change The impact of this is again on the chromosome string length which can
ebase and the structure of the rules. This

n attempt was m el consumption
model with the other optimisation objectives. This fue] consumption model was not a
derivative of vehicular delays or stops but used the traffic data as direct input to its
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the FL signal controller}. Two assessment methods are (1) to use analytical modelg and-
(2) to use a simulation model. Assume for the moment that a complete set of models
reflecting all policy objectives exists for analytical models and have been embedded i
the chosen simulation model. Which to use? Analytical models have been used g
optimise tiaffic signals using genetic algorithms (Clement 1997b) and simulatioq
models have been used as test-beds for all the fuzzy logic signal control systemg
reported in this paper The simulation method has a drawback in that it wouid take
considerably longer 10 process each individual in the GA population than would ap
analytical model. Advantages of the simulation method are that the work can be
performed using the same input data for successive tests of alternative systems (Pursula
and Niittymaki 1996) and that system parameters can be altered daring a processing run
without having to restart the systemm. Further, simulation occurs in the laboratory with o
no disruption to the system being tested and usually there is a large amount of output
data available from which calculations of various performance measures can be made.
Measures such as the average delay of vehicles, length of queues, amount of emissions,
fuel consumption and percentage of stopped vehicles can be drawn (Pursula and -
Niittymiki 1996). One of the arguments against the simulation method is that usua]ly"
outputs are given as a form of average and could be misleading. In addition simulation
models are usually expensive though In some instances the expense is contained mostly.
in the cost of the hardware needed to run the model to a workable speed. :

Whether to use an analytical method or a simulation method ultimately depends on the !
quality of the models used, more practically on the availability of the models and lastly.
on ease of implementation as the objective function of a genetic algorithm i

The ciassification approach

Tt has become generally accepted that a failing of the signal control systems currently in:
use (eg SCATS, SCOOT) is that they try to impose similar phasing and timing:
constraints over a wide area due t0 inflexible optimisation goals It is recognised that.
such restraints may be in order for some intersections but not for others in a different:
area of the network. Therefore systems of the type suggested by Clement (1997b) and
developed by Senoner (1997) may be more suitable for a wide range of sites because.
these systems aie essentially single intersection controllers Network optimisation:
considerations are effected through communication with their neighbouring controller
These systems have the potential to be much more flexible in two significant Wﬂ}‘s'
Fitstly optimisation objectives can be set for the local environment (not all poli
objectives would be required at each intersection) and are easily altered depending o7
circumstances. Secondly these systems arc designed to produce very flexible phasing
and timing arrangements not easily available to the controllers of today though
modifications to SCATS and its derivatives has achieved such arrangements as double: ..
phasing. Another approach was taken by Zhou et al (1997) who used an FL system ¢
classify traffic situations Operating parameters were then set for each of these 61.3555
and control was then left to conventional controllers which recognised particuld’ -
sitnations and changed parameter sets accordingly. The method of classifying situation®

. L i
then tuning FL system parameters 0 each class appears to be the most promistng T_h
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- would depend on finding an efficient method for classification that would include the
. policy-sensitive objectives discussed earlier ie encompass the traffic and network user
- approach. It would also depend on developing an effective way of easily tuning the FL
. systems to each of these classes

_'I-Iierarchical fuzzy logic systems

“A further complication arises when one considers the number of inputs needed for
~traffic signal control. Clearly many inputs are needed and more will be needed when the
: ange of objectives is extended The major effect of many Input variables is that the
‘number of rules increases algebraically with the number of input variables (Hoffmann
- ence the GA chromosome string required for optimisation would
“quickly become very long thus increasing the time required for a GA processing run.

Another consideration is that with two input variables it is casy to visualise the fuzzy
control surface in three dimensions and a graphical visualisation featuze is de rigeur for
'comemporary FL construction environments. See Clement (1997¢) for examples of
control surfaces taken from the SieFuzzy demonstration program.

(o> —~
/
_ stage and its
degree of

urgency

R =

Potential next

- switch degree

~ff]

gure S The Senoner fuzzy logic traffic signal control model showing the
Tarchical modular approach taken

On method to counter the large rulebase/big GA chromosome problem and o make

anual tuning of the fuzzy system easier is to build a hierarchical FL system (Hoffmann
d Pfister 1994 Sayers et al 1996). The modular and hierarchical ideas of the Sayers
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model were extended by the system of Senoner (1997) and the schematic of F o
shows the layering of the complete scheme into several FL systems each of Whigﬁre 5 -
be tuned independently. Note the use of intermediate variables used as COnnecCa.n %
between the various modules and how one facar input is fed into RB3, a secong ]tors:_..
rulebase. ayer

Essentially each rulebase (eg RB4) of Figure 5 along with its inputs and outpyt
representative of an FL system. The meaning of each input variable is explained ffn B
Senoner (1997) along with the methods by which the system works. The input Variaglm
include the number of cars waiting {(ncar), the elapsed time since the last green 11:;8
(eltime), the time remaining before the likely arrival of the upstream platoon of vehic.iet'-
(sytime), the number of vehicies in the link leading to the downstream intersecti os_..
(fncar), the number of outgoing vehicles for the last five seconds per lane (outcar) an:
the number of remaining vehicles in the lane (rncar). The Senoner system operates on :
competition for green time between the traffic streams of an intersection.

Examples of the saving in rulebase size are contained in Clement (1997¢)

Conclusions

The future direction of signal control is towards including policy-sensitive objectives i
the optimisation process and for systems that are flexible to the local environment of.
each intersection Fuzzy logic signal control systems appear to be well-suited to the
problem when tested undet faboratory simulation conditions and using communication. :
between neighbouring controllers as the means for network optimisation. Despite the
laboratory successes only one system of those reported has been applied to a practical:
situation. '

Tuning the fuzzy logic systems is usually carried out by trial and error and is often

tedious operation Genetic algorithm technology is a possibility for antomatic
optimisation of the setup parameters and methods of fuzzy logic systems Thse
parameters include the numbers of fuzzy sets for the input and output sides and thé
membership functions themselves The choices of methods are for the fuzzy inferencing
method and for the defuzzification technique. The size of the rulebase could impact
heavily on the performance of the GA optimiser and hence limjts on the possible
number of fuzzy sets may have to be imposed There are many instances of genetic
algorithm—optimisation of fuzzy logic systems but none of those reviewed in the
literature were applied to traffic signal control. L

The suggested approach is to classify traffic and network user demand situations 50 ft'_ha.
a different FL setup could be applied to each Optimisation - which would include th
broad range of objectives required of future signal systems - would then aim to find the
fuzzy logic parameters and processing choices for each of these classes Hrerall¥e
optimisation of the eclements of the fuzzy logic system is suggested. '
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