Session 4a Paper 2

THE FINANCIAL IMPACT ON GOVERNMENT OF A TRANSFER OF FREIGHT FROM RAIL TO ROAD

Phil Skene South Australian Transport Policy Unit

ABSTRACT

The paper is based on a study of the financial impact on the South Australian Government of a transfer of freight from rail to road. The financial impact on the Commonwealth Government is also assessed.

Three case studies are undertaken. The results show that a shift from rail to road will not have significant adverse financial impact on the State In all the cases studied, the Commonwealth Government is financially advantaged

The results also indicate, for all the case studies, that when account is taken of all taxes and charges, the revenue to governments exceed their costs

The methodology used in the study has possible applications for similar studies interstate and overseas.

Contact Author

Mr Phil Skene Transport Policy Unit Government of South Australia GPO Box 1599 Adelaide South Australia 5001 Australia

THE FINANCIAL IMPACT ON GOVERNMENT OF A TRANSFER OF FREIGHT FROM RAIL TO ROAD

1. INTRODUCTION.

This paper is based on a study undertaken by the South Australian Transport Policy Unit (Transport Policy Unit, 1995). The purpose of the study was to make an assessment of the financial impact on the South Australian Government of a transfer of freight from rail to road. The methodology used may also have application in the analysis of the financial impact on government of the withdrawal of rail services in other States and possibly overseas.

Three Case Studies of rail to road transfers were examined:

Case Study 1: Grain traffic from the Murray Mallee

Case Study 2: Freight from the South East.

Case Study 3: Containers between Melbourne and Perth.

The impact on the State Government's finances was the key issue. However, results were provided of the impact on the Commonwealth Government.

2. BASE DATA.

A map showing the location of the three case studies is given in Appendix 1.

Case Studies

Case Study 1: Carting Grain from the Murray Mallee to Port Adelaide

Because of the large area covered by the Murray Mallee region, Lameroo was selected as a particular case study for the region. Lameroo is on the Tailem Bend to Pinnaroo rail line. In an effort to model the impact of closure of the entire line as opposed to the isolated impact on a particular centre, it was assumed that the entire Pinnaroo line tonnage is carted from Lameroo. It was assumed that no back loading takes place as grain is the only rail traffic. Because grain is a seasonal commodity, it was further assumed that the task needs to be completed within a 5 month period.

Case Study 2: Transporting Freight Between Mount Gambier and Adelaide

Mount Gambier was selected as the focal point for freight cartage from the South East to Adelaide. Case Study 2 assessed the transport of freight between Mount Gambier and Adelaide (again, Port Adelaide was chosen as a convenient focal point). From the State Government's perspective, the impact on the State's finances would be worst if the freight is carried by truck from Mount Gambier to Wolseley or Bordertown and then transferred to rail (examined as Case Study 2A). This is because all of the truck movements will be on State roads and none on Commonwealth funded roads. The State therefore incurs all of the road costs without benefiting from revenues otherwise obtained from trucks using Commonwealth funded roads

Case Study 3: Transporting Containers between Melbourne and Perth

This case study involved assessing the financial costs to the South Australian Government associated with the road cartage of containers currently transported on the Melbourne to Perth rail line. Only the portion between Adelaide and the Western Australian and Victorian borders was considered. Table 1 provides estimates of rail freight traffic in the corridor

<u></u>	Melbourne/Ac	lelaide/Perth C	Corridor	
	Adelaide to Melbourne Tonnes ('000)	Melbourne to Adelaide Tonnes ('000)	Melbourne to Perth Tonnes ('000)	Perth to Melbourne Tonnes (*000)
Freight forwarder containers	165	194	174	74
Overseas containers	314	192	15	0
Total	479	386	189	74

TABLE 1 CASE STUDY 3: RAIL FREIGHT TRAFFIC Melbourne/Adelaide/Perth Corridor

Source: Australian National Railways Commission

3. ROAD TRANSPORT.

For the purposes of the Case Studies, it was assumed that the relevant road transport vehicle types and specifications are as provided in Table 2

Average road speed was estimated for each case study which, together with distance and tonnage to be transported, determines the number of vehicles required.

On the basis of the 1991 Survey of Motor Vehicle Usage (SMVU), 6 axle articulated vehicles and higher combination vehicles travel on average 104,200 kilometres and 145,300 kilometres per year respectively. Because of the intensive nature of the task, for the purposes of the study annual distances of 250,000 kilometres were assumed for six axle articulated trucks and B-doubles, with 200,000 kilometres assumed for double trailer road trains. The assumed annual distance impacts on the size of the derived average fixed charges (c/km) - the higher the assumed distance the lower the implied charge per kilometre

It was assumed that a truck transporting the freight displaced from rail in one direction also transports the back haul, if there is any That is, overall an excess of trucks does not emerge as a result of the transfer from rail to road. As a result, revenues and costs are based on the exact number of road vehicles required to perform the task, as if one freight operator had the ability to organise the entire operation.

Vehicle Type	Market Value ⁽¹⁾	Gross Tonnage	Payload	Average Distance	Fuel Consumption
	(\$)	(tonnes)	(tonnes)	Travelled (km pa) ⁽²⁾	(litres/100km) ⁽³⁾
6 axle articulated truck	\$257,500	42.5	27.1	250,000	40 to 55
B-double	\$276,500	59 0	38.3	250,000	44 to 62
Double trailer road train	\$348,800	79.0	52.4	200,000	60 to 75

	TABLE 2	
HEAVY	VEHICLE DETAILS	

Notes:

- (1): Based on the value of a grain truck for 6 axle artic and road train, and a flat top for B-double. Estimate provided from Austway Truck Costing Model.
- (2): Industry sources and ISC (1990, Vol 2, p123)
- (3): Source: ATN magazine (28 October 1994, p36) and industry sources

4. **REVENUES.**

Taxes and charges excluded from the study were:

- Superannuation Levy and Training Guarantee Levy.
- Drivers' Licence Fees
- Compulsory Third Party Insurance
- Company and Personal Income Taxes

It was assumed that these taxes and charges balance the costs incurred

State Levies

,

The following State levies were included as road related revenues:

- Vehicle registration charges.
- Fuel franchise fee.
- Stamp duty

Vehicle Registration Charges

NRTC fixed annual registration charges for the selected vehicle types are provided in Table 3.

TABLE 3HEAVY VEHICLE REGISTRATION CHARGES(as of 1 July 1994)

Vehicle Type	(\$)		
6 axle articulated truck	\$4,000		
B-double	\$5,750		
Double trailer road train	\$6,750		

On the basis of estimates of distance travelled per year, registration charge estimates per kilometre travelled are provided in Table 4

Registration Charge	Selected Annual Distance	Average Charge per kilometre
(\$)	<u>(km)</u>	(c/km)
\$4,000	250,000	1.6
\$5,750	250,000	2.3
\$6,750	200,000	30
	Charge (\$) \$4,000 \$5,750	Charge Annual Distance (km) (\$) (km) \$4,000 250,000 \$5,750 250,000

TABLE 4 REGISTRATION CHARGES

Fuel Franchise Fee

State fuel franchise fees are provided in Table 5.

TABLE 5 SA FUEL FRANCHISE LEVY RATES (as at 1 July 1994)

Fuel	Zone 1 (cents/litre)	Zone 2 (cents/litre)	Zone 3 (cents/litre)
Petrol			
-Unleaded	9.12	6.75	4.42
-Leaded	9.28	6.90	4.57
Distillate	10.41	8.09	5.71

Zone 1 encompasses an area within a radius of 50km from the Adelaide GPO, Zone 2 a radius of 100km from the Adelaide GPO excluding Zone 1 and Yorke Peninsula, and Zone 3 all parts of South Australia that lie outside Zones 1 and 2

As can be seen from Table 5, the franchise rate varies markedly between Zone 1 and Zone 3 On first consideration, because of the location of the Case Study areas, it could be thought that operators would choose to purchase fuel in Zone 3. Against this the pump price of fuel is generally much higher in country areas. Nevertheless, after discussions with operators, it is understood that the bulk of fuel purchases would be made in Zone 3

Using the fuel consumption rates provided in Table 2, the fuel franchise rates in Table 6 have been recast in terms of cents /kilometre for the relevant vehicle types, with the results provided in Table 6.

Vehicle Type	Zone 1 (c/km)	Zone 2 (c/km)	Zone 3 (c/km)
6 axle articulated truck	4.68	3.64	2 57
B-double	5.21	4 05	2.86
Double trailer road train	677	5.26	3 71

TABLE 6
HEAVY VEHICLE STATE FUEL CHARGES
(as of 1 July 1994)

Notes: Fuel consumption rates of 45, 50 and 65 1/100km used for 6 axle articulated, Bdouble and road trains respectively. These compare with class averages of 50.9 and 65.4 for 6 axle articulated trucks and higher combination vehicles respectively (1991 SMVU). It was assumed that newer, fuel efficient vehicles would be used on the line haul operations associated with the Case Studies.

Stamp Duty

The South Australian stamp duty rate for commercial vehicles is 408 + 3% of market value in excess of 14,600 On the basis of the market values given in Table 2, stamp duty collections for each new 6 axle articulated vehicle, B-double and road train are 7,695, 88,265 and 10,434 respectively.

Assuming a five year average vehicle ownership, the stamp duty collections would be equivalent to 0.62 c/km, 0.66 c/km and 1.04 c/km for 6 axle articulated truck, B-double and double trailer road train respectively. In practice a vehicle may generate a number of stamp duty collections during its life as the vehicle changes ownership. Hence these estimates understate actual potential collections.

Total State Revenues

Table 7 provides estimates of total State revenues for the selected vehicle type.

Vehicle Type	Registration	Fuel Franchise	Stamp Duty	Total
	(c/km)	(c/km)	(c/km)	(c/km)
6 axle articulated truck	1.6	2.57	0 62	4 79
B-double	2.3	2 86	0 66	5 82
Double trailer road train	3.0	3.71	1.04	7.75

TABLE 7 SA HEAVY VEHICLE COLLECTIONS (CENTS/KM) (ns of 1 July 1994)

Commonwealth Levies

The following Commonwealth levies were included as road related revenues:

- Fuel excise.
- Sales tax and customs duty.

Fuel Excise

The national uniform Commonwealth fuel excise was 30.75 cents/litre as at 1 July 1994. Table 8 derives the Commonwealth fuel excise for the relevant vehicle classes.

	(as of 1 July 1994	4)	
Vehicle Type	Current Commonwealth Excise (cents/litre)	Fuel Consumption (litres/100km)	Average Charge per kilometre (c/km)
6 axle articulated truck	30.75	45	13.84
B-double	30.75	50	15.38
Double trailer road train	30.75	65	19.99

TABLE 8 HEAVY VEHICLE COMMONWEALTH FUEL CHARGES (as of 1 bils 1004)

Source: Commonwealth Budget Papers

Sales Tax & Customs Duty

In 1994 the Commonwealth Government levied sales tax on vehicles and parts at the rate of 20%. Table 9 shows the sales tax on the purchase of the selected vehicle types.

Vehicle Type	Market Value (\$)	Sales Tax (\$)	Annual Distance (km)	Average Sales Tax per kilometre (c/km)
6 axle articulated truck	\$257,500	\$42,917	250,000	3 43
B-double	\$276,500	\$46,083	250,000	3.69
Double trailer road train	\$348,800	\$58,133	200,000	5.81

TABLE 9
HEAVY VEHICLE COMMONWEALTH SALES TAX

Note: Sales Tax levied at a rate of 20%

Assumes sales tax amortised over 5 year vehicle life.

Because of the uniformity of Commonwealth taxes, the SCOT Taxes and Charges Working Group estimates for Customs Duty and Sales Tax were used. The rates that have been used are 5.39 c/km, 7.11 c/km and 7.02 c/km for 6 axle articulated trucks, Bdoubles and double trailer road trains respectively.

Total Commonwealth Revenues

Table 10 provides estimates of total Commonwealth revenues for the selected vehicle types

Revenue Beneficiaries

Revenues raised by State charges are retained within the State. However, in relation to Commonwealth levies on vehicles registered in South Australia (sales tax) or operating within South Australia (fuel excise), the disposition of revenues raised is not clear. As a result, for the purposes of the Case Studies, it was assumed that South Australian receipts from road transport are confined to that gained from the levying of State charges alone, although this may be a conservative estimate.

Fuel Excise	Customs Duty & Sales Tax	Total
(c/km)	(c/km)	(c/km)
13.84	5.39	19.23
15.38	7.11	22.49
19.99	7.02	27.01
	(c/km) 13.84 15.38	Sales Tax Sales Tax (c/km) (c/km) 13.84 5.39 15.38 7.11

TABLE 10 COMMONWEALTH HEAVY VEHICLE COLLECTIONS (CENTS/KM) (28 of 1 July 1994)

5. COSTS.

Costs considered for the purposes of the study were:

- Road track costs.
- Enforcement costs
- Road safety costs

External costs such as congestion, air and noise pollution costs were not considered. Reliable estimates for such costs are still some way off and the analysis was to concentrate on the potential **financial** costs faced by the State.

Road Track Costs

Road track costs relate to costs involved in constructing and maintaining the road infrastructure. Table 11 provides estimates of South Australian road track costs for a range of heavy vehicle types, derived from the NRTC cost allocation model. For the vehicle types relevant to this exercise, road track costs range from 11.9 c/km to 13.2 c/km

Enforcement Costs

Enforcement costs are incurred in regulating the operations of road transport for both safety and asset preservation purposes (for example, overweight enforcement). Travers Morgan (1990, p37) reports total policing costs of \$34.758m. This figure indexed and divided by total kilometres travelled (all vehicles) results in policing costs of 0.35 c/km.

Accident Costs

Travers Morgan (1990, p38) estimated road related medical costs for articulated vehicles at \$122,000 per vehicle (\$1987/88). These costs indexed and divided by relevant distance travelled produced a medical cost estimate for articulated vehicles of

0.04 c/km The South Australian Department of Transport also expends resources in this area, with expenditures of \$23.240 million spent on road safety, equivalent to 0.16 c/km (all vehicle classes), resulting in a total accident cost estimate of 0.20 c/km.

For the purposes of the study it was assumed that third party and comprehensive insurance costs are covered by the relevant premiums

Vehicle Type Separable Non-separable Fully Allocate			
	Expenditure	-	Expenditure
	(c/km)	<u>(c/km)</u>	(c/km)
2 axle rigid trucks			
4.5 to 7.0 tonnes	0.9	21	2.9
7.0 to 12 0 tonnes	1.8	2.1	3.8
over 12 tonnes	3.1	21	5.1
3 axle rigid trucks			
up to 18 tonnes	18	2.1	.3.9
over 18 tonnes	4.7	2.1	6.7
4 axle rigid trucks			
up to 25 tonnes	2.1	2.1	42
over 25 tonnes	5.9	2.1	80
5 axle trucks (including	5.5	2.1	7.6
truck and trailer)			
Articulated trucks		×.	
3 axle	5.6	2.1	7.7
4 axle	6.3	2.1	84
5 axle	7.6	2.1	9.6
6 axle	9.8	2.1	11.9
7 or more axles	11.1	2.1	13.2
2 axle buses			
2.7 to 3.5 tonnes	0.4	2.1	24
3.5 to 5.0 tonnes	0.4	2.1	2.5
5 0 to 10 0 tonnes	1.2	2.1	3.2
over 10 tonnes	3.5	2.1	56
3 axle buses	5.0	2.1	7.1

TABLE 11HEAVY VEHICLE ROAD TRACK COSTSSOUTH AUSTRALIAN REGISTERED VEHICLES 1992/93

Source: NRTC special request

Total Costs

Table 12 summarises the total road costs.

TABLE 12 HEAVY VEHICLE COST (CENTS/KM) (as of 1 July 1994) Vehicle Type Road Enforcement Accident Total Track (c/km) (c/km) (c/km) (c/km)					
B-double	13.2	0.35	0.20	13.75	
Double trailer road train	13 2	035	0.20	13.75	

6. **REVENUES AND COSTS.**

Revenues and costs from the preceding tables are summarised in Table 13.

Vehicle Type	State Revenue c/km	Commonwealth Revenue c/km	Total Revenue c/km	All Costs c/km
6 axle articulated truck	4.79	19.23	24.02	12.45
B-double	5.82	22.49	28.31	13.75
Double trailer road train	7.75	27.01	34.76	13.75

7. **RESULTS.**

The results are summarised in Appendices 2 to 6.

Due to the fiscal imbalance between levels of government (often referred to as Vertical Fiscal Imbalance) the State Government has the potential to incur a net financial cost as

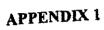
a result of any transfer of freight from rail, in the order of 7 7 c/km over State funded roads for a six axle articulated truck. The cost is, however, offset by any travel over Commonwealth funded roads, in which case the State receives revenues without incurring costs

From a State Government financial viewpoint, a key factor therefore is the proportion of any additional travel which takes place over State funded roads as opposed to roads funded by other levels of government. It is possible that for Case Studies where the greatest proportion of travel is over Commonwealth funded roads, the State Government may not be financially disadvantaged from a major shift from road to rail. However, in relation to the cartage of grain from the Mallee, where a significant portion of the road transport task is over State and Local Government roads, the State Government is likely to be financially disadvantaged; although even here a significant portion of the task takes place over Commonwealth funded roads.

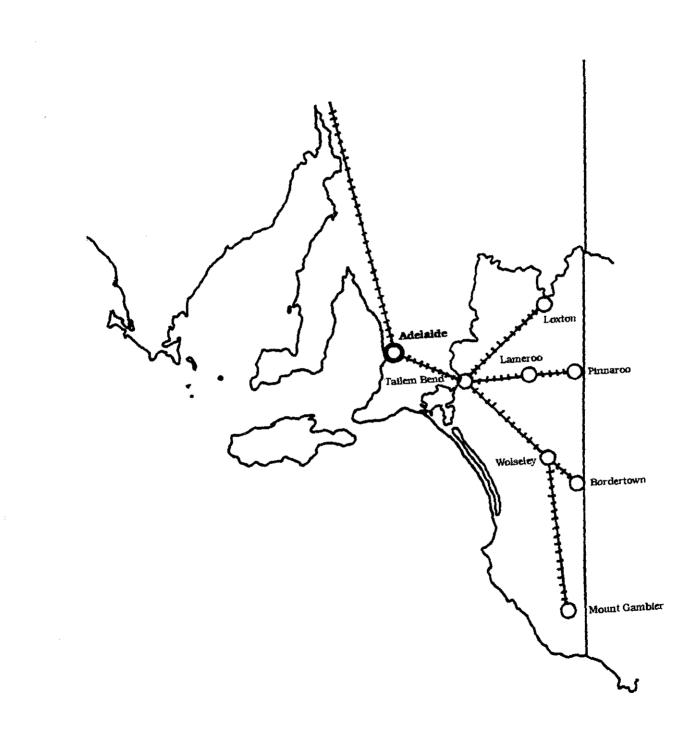
It is important that the results only be used to interpret broad orders of magnitude, given the many assumptions made in deriving the figures. For example, the "profitable" result for double trailer road trains no doubt is heavily influence by the use of the same road cost estimates as that used for B-doubles.

In general, it appears that for the Case Studies selected a shift of freight from rail to road would **not** have a significant adverse financial impact on the State Government The Commonwealth Government gains financially in all cases

In addition, because of the extent to which truck charges and taxes overall exceed relevant costs (in the order of 12 c/km for a six axle articulated truck), there is no strong case for either increasing road transport charges or subsidising rail freight transport.


8. **REFERENCES.**

National Road Transport Commission (1993), Cost Allocation and Charging.


SCOT Working Group (1994), Study on Taxes and Charges Paid by the Road Transport Industry, yet to be released

Transport Policy Unit (1995), Report on the Financial Impact on the South Australian Government of a Shift from Rail to Road Transport

Travers Morgan (1990), Road Cost Recovery in South Australia, report prepared fro the South Australian Director-General of Transport.

. Norme

APPENDIX 2 Financial impact of a transfer of freight from rail to road Case Study 1: Grain traffic from the Mallee Case Study 1:

Data	
Tonnage	111,190 tonnes
Round trip distance	446 km
Distance on State roads	212 km
Distance on Commonwealth roads	234 km
Average speed	92 km/h
Hours/trip	4.85
Trips/day	2
Days worked/week	6
Special factors	Seasonal task to be completed in 5 months

Total distance travelled by trucks

•	6 axle	B-double	Road train
Payload/truck (tonnes)	27 1	38.3	52.4
Number of truck movements	4103	2903	2122
Total travel distance (km)	1,829,917	1,294,797	946,388
State roads	869,826	615,464	449,853
Commonwealth roads	960,091	679,333	496,535
Truck movements			
	6 axle	B-double	Road train
Distance/truck/day	892	892	892
Distance/season	107,040	107,040	107,040
Number of trucks	17	12	9

Financial	impact
-----------	--------

i manciai impatt	6 axle	B-double	Road train
State			
Revenue (\$)	87,653	75,357	73,345
Cost (\$)	108,293	84,626	61,855
Gain (loss)	(20,640)	(9,269)	11,490
Commonwealth			
Revenue (\$)	351,893	291,200	255,619
Cost (\$)	119,531	93,408	68,274
Gain (loss)	232,362	197,792	187,346
Net impact (\$)	211,721	188,522	198,836

APPENDIX 3

Financial impact of a transfer of freight from rail to road Case Study 2: Mount Gambier to Adelaide

Data	
Tonnage	63,000 tonnes
Round trip distance	910 km
Distance on State roads	432 km
Distance on Commonwealth roads	478 km
Average speed	96 km/h
Hours/trip	9 48
Trips/day	1
Days worked/week	6
Special factors	Work 42 weeks/year

Total distance travelled by trucks

	6 axle	B-double	Road train
Payload/truck (tonnes)	27.1	38.3	52.4
Number of truck movements	2325	1645	1202
Total travel distance (km)	2,115,498	1,496,867	1,094,084
State roads	1,004,280	710,601	519,389
Commonwealth roads	1,111,218	782,266	574,695

Truck movements

	6 axle	B-double	Road train
Distance/truck/day	910	910	910
Distance/season	229,320	229,320	229,320
Number of trucks	9	7	5

Financial impact

	6 axle	B-double	Road train
State			
Revenue (\$)	101,332	87,118	84,792
Cost (\$)	125,033	97,708	71,416
Gain (loss)	(23,701)	(10,590)	13,375
Commonwealth			
Revenue (\$)	406,810	336,645	295,512
Cost (\$)	138,347	108,112	79,021
Gain (loss)	268,464	228,534	216,492
Net impact (\$)	244,763	217,944	229,867

APPENDIX 4 Financial impact of a transfer of freight from rail to road Case Study 2A: Mount Gambier to Bordertown

Data				
Tonnage		63,000 tonnes		
Round trip distance		372 km		
Distance on State roads		372 km		
Distance on Commonwealth ro	oads	0 km		
Average speed		96 km/h		
Hours/trip		3.88		
Trips/day		2		
Days worked/week		6		
Special factors		Work 42 weeks per year		
		1 3		
Total distance travelled by tr				
	6 axle	B-double	Road train	
Payload/truck (tonnes)	27.1	38.3	52 4	
Number of truck movements	2325	1645	1202	
Total travel distance (km)	864,797		447,252	
State roads	864,797	7 611,906	447,252	
Commonwealth roads	0	0	0	
Truck movements				
	6 axle	B-double	Road train	
Distance/truck/day	744	744	744	
Distance/season	187,488	3 187,488	187,488	
Number of trucks	5	3	2	
Financial impact				
	6 axle	B-double	Road train	
State				
Revenue (\$)	41,424	35,613	34,662	
Cost (\$)	107,667	•	61,497	
Gain (loss)	(66,243	-	(26,835)	
Commonwealth				
Revenue (\$)	166,300	137,618	120,803	
Cost (\$)	0	0	0	
Gain (loss)	166,300	137,618	120,803	
Net impact (\$)	1 00,05 7	89,094	93,968	

..

APPENDIX 5

Financial impact of a transfer of freight from rail to road Case Study 3: Victorian border to Adelaide

Data

Tonnage	575,000 tonnes
Round trip distance	620 km
Distance on State roads	12 km
Distance on Commonwealth roads	608 km
Average speed	95 km/h
Hours/trip	6.53
Trips/day	2
Days worked/week	6
Special factors	Work 48 weeks per year

Total distance travelled by trucks

	6 axle	B-double	Road train
Payload/truck (tonnes)	27.1	38.3	52.4
Number of truck movements	21,218	15,013	10,973
Total travel distance (km)	13,154,982	9,308,094	6,803,435
State roads	254,613	180,157	131,679
Commonwealth roads	12,900,369	9,127,937	6,671,756
Truck movements			
	6 axle	B-double	Road train
Distance/truck/day	1240	1240	1240
Distance/season	357,120	357,120	357,120
Number of trucks	53	37	34

Financial impact

	6 axle	B-double	Road train
State			
Revenue (\$)	630,124	541,731	527,266
Cost (\$)	31,699	24,772	18,106
Gain (loss)	598,424	516,960	509,160
Commonwealth			
Revenue (\$)	2,529,703	2,093,390	1,837,608
Cost (\$)	1,606,096	1,255,091	917,366
Gain (loss)	923,607	838,299	920,241
Net impact (\$)	1, 522,03 1	1,355,258	1,429,402

APPENDIX 6

Financial impact of a transfer of freight from rail to road Case Study 3: Adelaide to Western Australian border

Data

Data	
Tonnage	189,000 tonnes
Round trip distance	2470 km
Distance on State roads	20 km
Distance on Commonwealth roads	2450 km
Average speed	100 km/h
Hours/trip	24.70
Trips/day	05
Days worked/week	6
Special factors	Work 48 weeks per year

Total distance travelled by trucks

	6 axle	B-double	Road train
Payload/truck (tonnes)	27.1	38.3	52.4
Number of truck movements	6974	4935	3607
Total travel distance (km)	17,226,199	12,188,773	8,908,969
State roads	139,483	98,695	72,137
Commonwealth roads	17,086,716	12,090,078	8,836,832
Truck movements			
	6 axle	B-double	Road train
Distance/truck/day	1235	1235	1235
Distance/season	355,680	355,680	355,680
Number of trucks	69	49	45

Financial impact				
•	6 axle	B-double	Road train	
State				
Revenue (\$)	825,135	709,387	690,445	
Cost (\$)	17,366	13,570	9,919	
Gain (loss)	807,769	695,816	680,526	
Commonwealth				
Revenue (\$)	3,312,598	2,741,255	2,406,313	
Cost (\$)	2,127,296	1,662,386	1,215,064	
Gain (loss)	1,993,071	1,774,685	1,871,774	
Net impact (\$)	1,522,031	1,355,258	1,429,402	