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AES:J'RACT Given a nlOllber' of stop.S' and .line .lenqth, where
shou.ld the ~·top.s be .set foz' a tran,sLt: route?
Thi,S' paper use,S' 11lathematic-a.l derivation.S' to
compare thz-ee cran,s.le pez'for:mance LndJcat:ors
fr.idez'Sh.ip, tZ'r!Jnsi't r'Ound tr.ip trave.l t.lme and

pa.s'senqer wa.lkinq distance) under' different
transit .S'top spacinq po.licie.s'" An empi'ri'ca.l
study is a.lso presented to .S'uppor't the resu.lt.S'
of the theoret,ica.l der:i'vqtions. Four po.li'cy
.impl.lcat.ions for' tran.si't; ,stop spacing are
suqqested in the paper': r.I) transi t operators
wou.ld prefer' equa.l demand spacinq r-ather' than
equa.l distqnc'e spac.J:nq if the under.lyi'nq
trave.l demand fUDcti.'on l's convex; (2) tran.s.i t
round trip tr-ave.l and operator co.S't under'
equa.l distanc'e spacinq po.li'cy shou.ld be .lower
under' equa.l demand spaci'nq; (.J) tota.l
passenqer wa.lkinq distance under equa.l
di's'tance spaci'nq and equa.l demand spacinq
shou.ld be the sa11le; and (4) if the trave.l
demand is' equa.l.ly distributed then totq.l
wa.lki'nq distance under equa.l di.S'tance spac,inq
(or' equa.l demand spac.Jnq) c-an reach 11lini11lU111
tota.l wa.llt.inq distanc'e.

783



LING ,1ND T.AYLOR

L INTRODUCTION

The purpose of this paper is to clarify some of the arguments about tran­
sit stop spacing policies Given a number of stops and line length, four transit
spacing policies related to tI'avel demand have been proposed in the literature:
(1) uniform equal spacing: stops are equally spaced along the transit line ir­
respective of travel demand (Holroyd, 1965; Lesley, 1976); (2) inverse demand
spacing: spacings of transit stops should be inversely related to the ratio of pas­
senger odgins and destinations to volume ofpassengeI'S traveling through an area
(Vuchic, 1981); (3) inverse square root demand spacing: spacings of transit stops
in a linear' transit route should be inversely proportional to the square root of
the number of passenger boarding and alighting l (Vaughan and Cousins, 1977;
Webster and Bly, 1979; Kush and Perl, 1988; Wirasinghe and Ghoneim, 1981);
and (4) equal demand spacing: the number of boarding and alighting passenger's
is equal for each stop ..

With mathematical derivation, we investigate some of the properties of spac-·
iog policies and discuss general characteristics, Given the number of stops (de­
termined by the budget), three interesting questions related to transit spacing
policies are the following:

1. Which spacing policy will attract more transit passengers and operator
revenue'?

2. Which spacing policy will achieve the minimum transit round trip travel
time and operating cost?

3 From viewpoint of passengers, which spacing policy will minimise total
access time to tr'ansit stops?

Sections 2 to 4 discuss these three issues respectively A empirical study is pre-·
sented in section 5" Finally, some policy implications are made in the last section,

2. TRANSIT TRAVEL DEMAND (OPERATOR REVENUE)

Transit travel demand (modal split) is a fUnction of travel times and travel
costs on all tI'anspoI't modes. There are two r'easons why we could assume that all
variables are constant, with the exception of walking time, in the travel demand
fUnction for' comparing tr'avel demand under' different spacing policies

l'square root' on a. linear route should be replaced by 'cube root' in a two-dimensional city
(V.ughan, 1986)
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Figure 1: Transit Stops Along the Route

1 Auto travel time, auto travel cost and transit fare are independent of spacing
policy..

2., In designing bus stop locations, access time (walking time to bus stop) is
the only significant factor influencing transit travel time among the four
components of passenger: travel time,

Thus the travel demand model could be simplified as a fUnction of walking dis­
tance fOI' comparing tt'avel demand under different spacing policies

D; = f(w) (1)

f is travel demand function, and D; is travel demand (including auto and
."---,., at stop i and w is walking distance

Consider a given transit line with line length L as shown in Figure 1, for which
i = 1, 2,. , n} are distances from the first stop to stops {S;, i = 1, 2, , n} and
= 1,2, "" n} are the hinterland boundaries of the stops, e"g. trips started

finish.ed between 1;_1 and I; will use stop S;, Under equal spacing policy, total
passenger demand is

n . L . L
I:D;f(-) = D7 1(-)
i=l n n

D7 is total travel demand, L is transit line length"
trarrsit travel demand under equal demand policy is
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On the other hand,
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According to Jensen's Inequality 2 (see Mitrinovic, 1964) we obtain

!( ~) < ~ 2:':1 !(l, -h·d
= ~ 2:':1 f(l, - 1,_1)
> ~ 2:':1 !(l, - l,-d

if f (w) is strictly convex,
if f(w) is linear
if I(w) is strictly concave

(4)

In other words, equal demand spacing would attract more passengers if the few)
were strictly convex and less if it were concave Transit operators would prefer
equal demand spacing if the f( w) were convex because it would attract more
passengers and hence increase revenue, On the other hand, equal spacing would
be prefened by transit operator~ if f( w) were concave

3, TRANSIT ROUND TRIP TRAVEL TIME (OPERATING COST),
Three components of a transit travel time (from the first stop to the last) are

included: passenger boarding ~d alighting time, constant-speed travel time, and
the additional acceleration and deceleration time (lost time for stopping) Among
them, the transit additional acceleI'ation and deceleration time is the only factor
affected by the different transit stop spacing policies,

Suppose the spacings are long enough that transit vehicles can accelerate to
maximum speed, The expected value of lost time from the fust stop to the last
1S

n V. 1 1
L~(-+-)[1-exp(-Dbi») (5)
i=l 2 re rb

(see Ling and Taylor, 1988), where D bi is the transit demand at i, Vm is the
maximum tI'ansit speed, rG and r'b are transit acceleI'ation and deceleI'ation rate
For equal demand spacing policy, total expected lost time from the fust stop to
the last is

Vm 1 1';;'" -Db; Vm 1 1 1 .;;...-(- + -) L)1 - exp(--)] =-(- + - )[n - nexp( - L- -Dbi»)
2 r a rb i=l n 2 Ta rb n i=1

(6)

On the other hand, for equal spacing policy,

V.11" V.11"
~(-+ -) L[1 - exp(-Db;)] = ~(- + - )[n - L exp( -Db;)] (7)
2 Ta Tb i==1 2 Ta Tb i=1

2For every convex function f(z),

1 f1 1 f1

f(- La,)::; - L!(a;)
n i=l n i=l
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Since the negative exponential function is convex, we could obtain (8) according
to Jensen's Inequality

1 n "
nexp(- :L-Dbi) S Lexp(-Dbi )

n i=l i=I
(8)

This expression indicates that expected lost time under equal demand spacing
policy would greater than that under equal spacing policy. The shorter transit
round trip travel time allow for small fleet size. In other words, transit round
trips travel time as well as operating cost under equal demand spacing policy
would greater than that under equal spacing policy

4, PASSENGER WALKING DISTANCE

Let us further specialise to the case wheI'e all transit passengers access transit
stops by walking, the average walking distance to the nearest transit stop is
approximately one-fourth of the distance between two stops Therefore the total
walking distance is given by:

1 "W = - :L(I. -I._,)(g(l,) - q(li-,)J
4 i=l

(9)

where W is the total walking distance and g is the passenger demand as a con­
tinuous function of the distance fr·om the fitst stop,

Under equal spacing policy,

W = ~ t :£[g(l,) - q(l.-,)J = LD,
4 i=l n 4n

where D, is the total transit travel demand,

On the other hand, walking distance under equal demand policy is

(10)

(11)

results of equations (10) and (11) show that total walking distance under
spacing and equal demand spacing would be equal.

Suppose the travel demand is equally distributed, ie g(x) = k, where k is
constant.. Then,

k n

W = - :L(l. -I._I? (12)
4 i=l

787



LING AND TAYLOR

Under equal spacing,
kIn

W = -n[- :L(li -li_1 )]'
4 n i=l

According to Jensen's Inequality we obtain

(13)

(14)

In otheI words, if the travel demand is equally distributed then equal spacing (as
well as equal demand spacing) can achieve minimum total walking distance In
this case, passengels would plefer equal spacing policy (or equal demand spac­
ing policy) Vaughan and Cousins (1977) made the same conclusion by using a
continuous model which described the trip OIigins and destinations along the bus
IOute as a continuous function of distance from the fi,st stop, The model was
solved numerically to obtain the optimum bus stop spacing.

For the geneI'al case of miriimising total walking distance, we take derivatives
of equation (9) with respect to li 1 i = 1,2, '''1 n - 1, set them equal to zero, and
solve simultaneously,

j
~'i = H2g(l,) - g(lo) -, g(l,) + (21, -10 -I,)g' (I,)] =0
~t = H2g(l,) - g(I, ) - g(13 ) + (21, -I, -13 )g'(I,)J = 0

(15)

~7::, = H2g(ln-,) - g(ln-') - g(ln) + (2In_1 -In_, -In)g'(ln-l)J = 0

This yields a set of n - 1 nonlinear equations Since In and 10 are given, the
equations contain n - 1 unknown variables" Thus we can find a feasible solution
{Ii,i = 1,2",n -l} such that the total walking distance is minimum, Thele
are several computer packages (e.g. IMSL) fOI solving such a system of nonlineaI
equations, However, the set of equations above has a special structure Each
equation contains only three unknown variables with the exception of the filst
and the last equations which contain only two variables each The genelalised
algOIithm of solving nonlineaI' equations is inefficient, Ot perhaps unable to find
the global optimum solution for a large number of equations. In this papeI we
develop a special method to solve those equations. It is derived in following steps:

1 assume an initial value of 11 to solve 12 through the fiIst equation;

2" since 11 and i2 are determined, we could obtain is by solving the second
equation.. Similarly, i4 , is, ,in could be obtained
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I should be approximately equal to L. If the differences between In and L are
too large, set new value of II and repeat steps 1 and 2 until satisfactory
convergence is reached

Compared with the IMSL subroutine, this method has proved more efficient (less
computer CPU time) in various numerical examples, while the results are almost
identical

5 EMPIRICAL STUDY

We compare total walking distance and transit travel time under six spacing policies
on the basis of an empirical study, The spacing policies are: existing system, minimum
walking distance spacing, equal spacing, equal demand spacing, inverse demand spacing,
and inverse square root demand spacing,

The bus route chosen for this study is the Melbourne Bus Route 700 which begins
at Mordialloc, tUns along Wanigal Road, and ends at Box Hill It is 25.2 km long and
contains 97 bus stops The average bus stop spacing is approximately 260 metres. A bus
trip O·D survey was carried out in 1985 by Denis Johnston and associates Pty Ltd under
contract to the MTA A total of 1811 single journeys were recorded for the route 30.3
per cent of the ttips occutI'ed during the peak hout (4pm to 5pm) The calculations in
the following are based on the peak hour data. Denis Johnston and Associates (1987)
discussed the details of the data collection method and procedures

The continuous cumulative function of boarding and alighting passengers, g(x), is
represented by a polyoomial function of the distance from the first stop. It was estimated
from the obsetved bus trip O-D survey data described above

The hinterland boundaties of the transit stop locations, {Ii , i = 1,2"n}, under
different spacing policies are calculated as follows

Egual Spacing

I, =
iL

n

Egual Demand Spacing

g(l,) .. g(Ii-l) =
g(L)

n

i = 1,2"",n

i = 1,2,,,, ",n

(16)

(17)

A10107~20
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Since 10 is given, we can obtain {li,i = l,2 l ,n} by solving the set of equations

Inverse Demand Spacing

1
(I, - 10)[g(l,) - g(lo)J = (I, - 1,)[g(I,) - g(l,)J
(I, - I,)[g(l,) - g(I,)J = (13 - 1,)[g(l3) - g(l,)]

(18)

(1._, - I._,)[g(l._,) - g(l.-,)] = (I. - 1._,)[g(I.) - g(l.-,)J

The method of solving minimum walking distance as mentioned as in section 4
can be applied to find the solutions for the set of equations above

Inverse Square Root Demand Spacing

1

(I, -lo))g(I,) - g(lo) = (I, -I,))g(l,) - g(l,)

(I, -I,))g(l,) - g(l,) = (13 -I,))g(l3) - g(l,)
(19)

~I.-, -I._,))g(l._,) - 9(1.-,) = (I. -I._,))g(l.) - g(l.-,)

SimilaI' method of minimum. walking distance as mentioned as in section 4 can
be applied to find the solutions, {Ii,i = 1,2"n}

If people walk to the nearest bus stop, (Lesley, 19 i6; Wirasinghe and Ghoneim,
1981; Kikuchi, 1985) then bus stops should be located at the midpoint between
boundaxies, i.e.. $i = !(li-l + li),3 Since the transit stop locations are determined
we could calculate transit demand for each stop

D" = D(li) - D(li_,) (20)

The results of bus stop locations and travel demand are shown in Table 1
As a simplified demonstration, only the first 15 of 9 i stop locations are listed
By examining Table 1, it is found that the variations of distance between two
adjoining stops under inverse demand and inverse sqUaI'€ root demand policies
lie between those of equal spacing and equal demand spacing policies.

3Some pa.pers (Vuchic and Newell, 1968; Black, 1978; Hurdle and Wirasinghe, 1980) assume
people minimise travel time ra.ther than minimise walking distance, then Si is greater than but
nearly equal to Hh-l + 1;), i e people will have the same propensity to walk to the stop nearer
their destination,
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Table 1: The First 15 Bus Stop locations and Travel Demand Under Different Spacing
policies

Exisring Equal Equal Inverse Inverse Square
System Spacing Demand Demand Root Demand

Spacing Spacing Spacing

1, Dbi I, Db; 1, Dbi 1; Db; I, Db!

1 0.30 8 026 7 056 16 0.38 10 034 9
2 0.60 9 0.52 8 102 16 074 11 067 10
3 090 10 078 8 143 16 108 12 099 11
4 1.20 11 104 9 179 16 140 12 129 12
5 165 18 1.30 10 212 16 1.71 13 159 12
6 210 21 1.56 11 244 16 200 13 188 13
7 2.30 10 182 11 273 16 229 14 216 13
8 2.50 10 208 12 302 16 257 14 244 14
9 285 20 234 13 329 16 2.84 15 271 14

10 320 12 2.60 13 355 16 311 15 298 15
11 340 18 286 14 381 16 337 15 324 15
12 360 19 312 15 406 16 363 15 351 15
13 390 26 338 15 430 16 388 16 377 15
14 420 26 364 16 455 16 4.13 16 402 16
15 460 27 390 16 479 16 438 16 428 16

I = hinterland boundaries of stop locations (km)
Db! = numbers of boarding and alighting passengers

The theoretical model described in this paper is a planning tool only, for use in the
initial stages of route planning and design. It provides flfst-order estimates of stop
locations, based on the spacing policy adopted for a given set of circumstances The
precise locations of actual stops can only be determined after the basic route design, and
then taking into account the second~orde[' effects of such factors as intersection location,
main sites of trip generation. built form of the area, geometric design of the route and
traffic signal coordination, More details on the possible effects of these factors (e g.. bus
stop location upstream or downstream of a signalised intersection. etc.) may be found in
Institute of Traffie Engineers (1967) and Terry and Thomas (1971). Thus the results in
Table 1 would have to be a<!iusted for the specific route in terms of these second-order
factors to determine precise stop locations The spacing policy model has its application
in 'sketch' planning and preliminary route design

Since transit stop locations under the different spacing policies are indicated by the
model, we can calculate the transit demand for each stop, as well as total walking
distance (passenger access) and bus travel time (see ling, 1987).. The results are shown
in Table 2.. They suggest four findings
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1 The results support rwo theoretical derivations from sections 3 and 4: (1) the tntal
walking distances under equal spacing and equal demand spacing are about the same­
and (2) transit travel time under equal spacing policy is less than that for equal
demand spacing,

2 Siting stop locations according to the minimum walking distance spacing method
could reduce total walking distance in the existing system by up to 22 per cent

3 Although the existing system has the minimum transit total travel time, the difference
berween this travel time and those of the theoretical spacing policies is not significant
(09 minutes in 61 minutes, ie 15 per cent) This should be compared to the
significant improvements in access time (about 22 per cent decrease in walking
distance) Given Webster and Bly's (1979) study indicating that travellers value
walking and waiting times as about twice as important as riding time, the model
results suggest that there is considerable opportunity for service improvement

4 The results for stop locations and transit performance under minimum walking
distance are almost the same as those for the inverse demand spacing policy. These
policies offer the best levels of access for passengers in this example

Table 2: Comparison of Performance Under Different Spacing Policies

Total Walking Distance (km) Transit Travel Time (min)

Existing System
Minimum Walking Distance
Equal Spacing
Equal Demand Spacing
Inverse Demand Spacing
Inverse Square Root Demand

6 CONCLUSIONS

1195
957
980
980
957
960

610
619
616
619
619
618

The planning and initial design of bus routes requires some assumption about the
level of service required to meet a given level of passenger demand DTh~:e,!t:;~:~~
locations of stops are an important part of this process, and this paper has
examined a number of policies for stop spacing, Although a precise route
detailed additional information on population distribution, travel demand fun,ctic,ns,
and land use characteristics, the following policy and planning implications may be
from this study:
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1 Transit ridership and operator revenue under different spacing policies are dependent
on the travel demand function, which is itself related to walking distance.. Transit
operators would prefer equal demand spacing rather than equal distance spacing if
the demand function is convex, otherwise equal distance spacing be preferred. Given
a passenger demand function and bus stop spacing (or number of stops) policy, a
planner could use the theoretical model to determine the stop locations that maximise
operator revenue

2, Transit round trip travel time and operator cost under equal distance spacing are less
than under equal demand spacing, Transit operators would prefer equal distance
spacing as it offers lower operating costs, However, the differences do not appear to
be significant

3 Supposing that all transit passengers access transit stops on foot, then total passenger
walking distance under equal distance spacing and equal demand spacing are equal
'The assumption of foot-only access is valid for many suburban bus routes,

4 If the travel demand is equally distributed along the route, then total walking distance
under equal distance spacing (and, equivalently, equal demand spacing) can approach
the absolute minimum total walking distance, Otherwise, the method presented in
section 4 may be used to find transit stop locations that minimise total walking
distance Equal distribution of demand is an assumption that may well apply within
a CBD, indicating that equal distance spacing is an appropriate policy in the CBO
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