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. ABSTRACT Lueuelng Theory provides an ungssailable
rationale for most discrete Flow problems —-
cars on the road, customers ar cash~reglister
channels, travellers at baggage counters,
trucks at loading docks, Ships In port. Most
Importantly It demonstrates that traffic
congestion Is not an evil, per se, butr rather
& feedback mechanism that spreads rthe peak,
changes the route or mode apnd eventvally
brings the land-use and transport resources
into balance. It is also a most userful tool
for the operational anal ¥s21s and Ffunctional
design of transport facilities and Systems.
It Is surprising therefore thatr It is not more
generally applied in the on-the- -Job sense.

One reason perkaps is that, with the exception
of the most simple situations, the analytical
results are clumsy and awkward to eveluate,
In this paper the authors discuss the results
of some recent research on the devalopment of
simple and widely applicable formulae that
give accurate results for both single and
multiple channel queuveing systems and take
account of a wide range of traffic handling
characteristics. The intractable problem of
time dependent demands and computer simulation
technigues are also discussed.
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INTRODUCIION

Queueing is without doubt the mest widely observed phencmen in Cransport
proccesses - vehicles at intersections, ships moving through a port,
trucks using loading/unloading docks, passengers at baggage counters,
customers at telling windows and cash register channels, motorists at
toll barriers, aircraft approaching runways and numerous other transport
operations, even relatively static ones such as parking. All these
traffic elements have a unique common characteristic - their capacicy
i.e. the maximum rate at which they can pass traffic. Queueing ogccurs
when trucks, ships, cars, peqple arrive in a mare or less randem manner
to use the facilities described above. The manner of specifying
their manner of arrival must.be time specific i.e. as a rate of arrival
or demand. Much philosophical and analytical confusion arises from

a failure to distinguish clearly between the rate of demand and the
total demand.

Queueing systems fall into two main categories - single channel and
multiple channel. Traffic flow facilities - intersections, roads,
train tracks are included in the former; and terminal facilities -
docks, service counters, parking lots the larcer.

ITHE REVISTIAIION

The theory of queues and waiting lines is rigorously based on probability
theory and its application at the turn of the century to traffic was due
to the pioneering work of A. K. Erlang, a Danish scientist and
telephone asngineer. It is not surprising therefere that its initial
application was to telephone traffic problems. It was embraced world
wide and has been supported by an enormous literature of high quality
What is surprising however i{s the limited use made of it in the field

of transport. The first two editicns of the Highway Capacity Manual
make no use of it whatsocever and the current massive Third Edition
accords it one passing raference. During the second half of the
century a good deal of repioneering has been carried out by staff
and students of the School of Traffic Engineering ot the University cf
New South Wales (1,2,3,4,5,6) and by some notable workers elsewhers (7,
8,9,10). Even so it does not seem to have been embraced with much
enthusiasm by the professional traffic engineer and planner. Hence

the motive for this revigitatien.

In a conceptual and philosophical sense queveing theory provides the
analyst and engineer with the Hooks Law or Ohms law of traffic. It
establishes the basic characteristic curve that ralates the delay,
travel Cime or cost of passage along or through any transport facility
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to the time intensity of the traffic demand. This characteristic is
univerally applicable to the wide range of transport devices and
facilities mentioned above and is of the form shown in Figure 1. It
has very important general properties -

(a)

411 the curves in the queueing family are highly non-linear -

at low values of the traffic intensity the extra delay (i.e. the
queusing delay), which represents in a gemeral way the inefficiency
of the flew or handling process will increase slowly at first
but as the traffic intensity approaches unity (i.e. saturation)
the increase in delay is dramatic and at the onset of saturation
becomes infinite even though the facility itself may still be
passing traffic quite satisfacrorily.

The non-linearity of these curves is accentuated as they move to
the right. This results from successive curves representing
flow situations in which the quality of the flow process is
"better” - either the demand stream is more regular and/or the
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Fig. 1 Ihe Queueing Characteristic

AT0107-18




BIUNDEN, VANDEBLONA

service operation more uniform. If both were "perfect” there
would be no queueing delay over the whole range of flow (no lcad
to full load); but as soon as saturation is reached the queue.
would build-up indefinitely along theé capacity asymptote

These fundamental properties require that the flow process is statistic-
ally stationary i.e. the mean demand rate remains steady over all time.
If this be so then the non-linearity results in a powerful feedback
influence that guarantees the stability of the flow operationm by limit-
ing the demand on the particular facility by shifting some of it to
alternative routes or different modes or other destinations. In such
circumstances there would be no need to hiss out the term traffic
congestion as if it were a sin but instead consider the merits (or
otherwise) of the adjusted situation.

But in practice traffic demands do not persist indefinitely. However
as will be shown later even quite short overloads cause very rapid
inecreases in delay and the feedback effects are strong enough to
maintain stability by first causing the demand to spread-ocut in time so
as to maintain its instantaneous rate at just around capacity. The
implications of these important considerations are intuitively under-
stood by professional transport operator- and the experienced road user
who as a resgult resort to better time scheduling of their tramsport
activities. However at the political and bureaucratic planning level
the high degree of dependence of the voting public on the motor car
and the paranoia that congestion engenders all to oiten influences the
decision maker to opt for expensive and ineffectual solutions - the
Sydney Harbour Iunnel Project is a good example of the need to fully
understand the implications of congestion feedback.

But gquite apart from the basic conceptual significance of the queueing
theory rationale in overall transport system planning the detailed
analytical assessment and economic evaluation of nearly all transpert
schemes and projects calls for meaningful calculations of operating
costs. These depend on the analysts ability to make accurate assess-
ments of travel times and delays under normal operating conditions i.e.
at traffic intensities below saturation. This return visit to the
queueing theory mansion has provided the authors with the opportunity
to look more closely at some of its treasures and te discover some new
ones.

THE STATE OF IHE ART

The starting point for all queueing analysis is knowledge of the form
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of the distributions of the arrivals and the service times (time to buy
a ticket, pay a toll, start-up at an Intersection). These distribur-
ions are many and varied but those for particulat operations and
processes are surprisingly "immutable”.  Many such distributions have
been obtained experimentally by staff and students at the University of
‘New South Wales (5,6) The distribution function is generally of the
Gamma type and may be conveniently approximated by the Erlang family
‘ghown in Figure 2. These distributions are particularly apposite for
queueing applications as they are very easy to generate for computer
“gimulation studies.
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:The describing parameters of the above distributions are the -
. the mean arrival interval/service time, TBAR

« the Erlang K Number which ranges from 1 for an exponential
distribution to infinity for a uniform one.

eaving aside for the present peak and other highly time dependent
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demands it is generally safe to assume that the arrival distributiong
are exponentially distributed. Service or handling distributions are
more varied but in the absence of specific data they may be conveniently
divided into two main categories -

practiced and repetitous tasks such as starting-up at intersect-
ions, paying a toll, boarding a bus have high Erlang Numbers
and for initial caleulations may be assumed to be constant (i.e.
K = infinity);

tasks which are influenced by many "independent” factors -
checking a trolly of Broceries, length of stay in a parking

space, baggage check-in tend to randomness {i.e. K= 1),

Tke former are generally associated with traffic flow processes and
single channel operation and the latter with terminal facilities with
many channels.

Io facilitate comparisons of the performance characteristics the
independent variable is usually represented as the traffic intensity
which is the ratio of the mean arrival rate to the total capacity rate
(all channels and is designated here as Y. The output (i.e. the delay)
is expressed in mean service time units - ITBAR. The determining
parameters of the whole range of queueing devices then reduce to just
two =~ the Erlang Number, K and the Number of channels, M. The
principal measures of performance are the average delay in the queue -~
WBAR and the probability that the system 1s full, often known as the
Erlang Loss Probability - PL, Both are extremely useful for assess~
the economic merit of additional economic investment - the former
especially relevant to flow facilities and the latter in the evaluaticn
of terminals.

There are thrée results of great significance to the analyst. -
philesophically, practically and computationally =~
{a) The Erlang Loss Formula

PL = ((A™MM)/(L1 + A + (A**2)/(21) ......... . (A**M)/(M1))

where A = M*Y: A is known as the Traffic Ioad.

This result is not only of great significance from a design point of
view but 1s also most useful rathematically in simplifying the many
computationally awkward formulae for myltiple channel systems. It is
tabulated for a representative range of values of A and M in Table l.
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Iable 1  Probability of Loss for Various Iraffic
loads and Channels
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Average Delav for all systems with random arrivals and exponent—
ial service or handling times
DBAR = PD/(M - A)

where DBAR is the average delay in the queue in mean service time
units, SBAR; '

PD is the probability of delay - a useful performance
measure in its own right; it is related to PL, viz -

FD = M*PL/{(M - A*(1 - PL})
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(e) The Average Delay for a single chanrel system with exponential

arrivals and any service distribution =~ the Pollaczek-Khinching
Formula

WBAR = DBAR*(1l + C#%2)/2

where WBAR is the mean delay in the queue for any service
distribution

C is the coefficient of variation of that distribution; 1if
the distribution is approximated by an Erlang K curve thep
C**2 = 1/K and WBAR may be written -~

WBAR = DBAR*(l + K)/(2*K)
IHE NEW RESULIS

The above remarkable results allow a very wide range of queueing
problems to be analysed. However there are three questions that are
not satisfactorily answered in the literature which militate against
the full universality of their application, viz -

{a) Does the Erlang Loss Formula hold for non-exponential service
distributions?

(b} Is there a simple correction to the general delay formula that
would hold for any service distributiom when the number of
channels is greater than one?

{e) Can the arbitrary service time distribution in the Pollaczek-
Khinchine Formula be taken to include a deterministically
programmed sequence?

These questions have been addressed in a heuristic manner and affirm-
ative answers have been validated by extensive direct simulation.

Ihe Erlang Loss Formula

To test Proposition (a) a direct simulation of the rejection probabilit-
ies of arrivals ata single channel facility with constant service was
carried out and the results compared with the staadard PL Formula which
is generally considered rigorously valid for exponential service.

The results are summarised in Table 2.
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Iable 2 Probability of Loss Comparison

Iraffic Intensity Erlang ILoss Simulation
Formula of CSQ

0.3333 0.3243

0.4707 0.4663

The General Delay Formyla

Figure 3} shows the results of a simulation'study on the multiple queue
system with constant service and demonstrates a surprisingly simple
result. It is that the effect of regularising the service 1ig the
same for many channels as for one. The importance of this is further
~accentuated when 1t is noted that the queueing delay Is dominated
coverwhelmingly by the number of channels in the system - falling to g
‘negligible amount when the number exceeds 10. In view of thege
cresults it is clear that the general formula given in (b) above would
:be closely approximated for a1] queueing situations with exponential
-arrivals and any Erlang service distribution by introducing the

{1 # K)/(2*) factor of the Follaczek-Khinchine Formula, viz -

DBAR = (PD/(M-A))*( (14K )/ (2%K))

Pfogrammed Service Iimes

ler, Newell, fitring effort
Tesented in the new High Here we investigate
he direce application of & result by regarding
during the green
€ equal to the red time
time distribution, On the basis that
h a Sequence is deterministic it Seems reasonable to assume that its
hce is zero i.e, K = infinity. Thig assumption has been tested
service time Sequences. The mean start—
"service “time ig readily calculated, viz -
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Fig. 3  MULTICHAN Simpulation Results

SBAR = (INT( s¥g*c/36C0)*3600/s) +(1-g)*c)/(INI(s*a*c/3600) + 1)

where s is the start-up rate of the approach lane (vehicles/hour)

¢ is the cycle time (seconds)

g is the effective green time ratio.

The delay per vehicle, DBAR is then given by -

DBAR = TBAR *(1 + Y/(2*({(1 - Y)) for values of Y < 1
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This result together with some other well known intersection delay
results and the new Highway Capacity Manual Formula are compared with
those of an extensive simulation study in Table 3, The simulation
was carried out om an intersection approach with the following operat-
ienal characteristics -

start-up capacity - 1500 vehicles/hour/lane

cycle time - 60 seconds

effective green time ratio 0.5

flow range -~ 75 to 675 vehicles/hour

simulation - 20 runs of an hours actual duratien for each flow.

Iable 3 Intersection Simulation Results

Average Sim'l'd P-K Webster
Flow Delay Formula

75 . §6
.28
47
.28
.05
30
.63
.85
.84

Wk WM N e N

The Overleaded Intersection

n this problem there is much confusion. It has been made clear
arlier in this paper that overloading for an extended time period is
irtually impossible. Short term overloads of some 10 - 15 minutes
'do seem common encugh in urban traffic. Even so it is very difficult
“to decide whether these peaks are true overloads or in the context of
2¥, a two hour busy period they are little more than random
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fluctuations anyway. However without debating this difficult issue ig
more detail here it 1s pertinent to note that 1f serious overleading
does in fact take place deterministic queueing models provide a sound
rationale for their analysis. For an intersection approach or any
other facility operating at a Y value in excess of I for a period of
time T seconds the average delay per vehicle may be written -

DBAR = {1 - g)*c/2 + (Y - L)*T/2

This is a surprisingly simple result when one considers the the curve-
fitting ingenuity used in obtaining the new Highway Capacity Manual
Formula and that produced by the Australian Road Research Board for
local applicatiom. Once again the validity of this result was tested
by a simulation study and the results are summarised below in Table 4.

Table 4 Simulation Study of an Overloaded Intersection

Overload
atio

Time
(mins)

SIM'L'N
DBAR
HCM

SIM'L'N
DBAR
HCM

SIM'L'N
DBAR
HCM

SIM'L'N
DBAR
HCM

* The Highway Capacity Manual Formula 18 calibrated for an assumed
15 minute overload period only.
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1f the simulation results can be considered to establist the delay
benchmark then the DBAR formula estimates, even though high, are of the
right order. The HCM figures are significantly higher again for the
15 minute overload situation, As the formula does not include tjige
explicitly the results for the longer periods have no real meaning,
except that they are what the Formula yields. However the important
conclusion that emerges is that despite the discrepancies the delay
consequences of persistent overloading are dramatic enough to reinforce
the earlier remarks concerning the stabilising influence of the
queueing mechanism,

CCNCLUDING REMARKS

Queueing Theory is an esoteric topic. Its importance in transport
and’ land-use planning demands that it be reviewed and represented from
time to time. In doing this it is hoped that the new results and

the powerful role of computer simulation will aid its better under-
standing by the operator and analyst. The "theory" tag is perhaps

one reason for the diffidence of the practitioner. However it should
be remembered that whilst tables, graphs, even simulation summarise
data there is no substitute for rationally based formulae for they
sumrarise knowledge and provide a framework for innovative application.

In particular the investigations reported-on here show that within the
limits of accuracy of the simulations which are high the following

results emerge -

(a) the Erlang Loss Formula is valid for any Erlang form of the
service time distribution:

the Average Delay for any number of channels and any Erlang
service distribution can be closely approximated by an exterdsion
of the Pollaczek-Khinchine Formulae:

a deterministic service time sequence can be very reasonably
represented as a distribution with zero variance:

for situations such as traffic signals subject to appreciable
short-term input overloads a simple deterministic delay
formula provides the most realistic analytical model for delay
calculations.
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