


BLUNDEN. V~~DEBONA

INIRODUCIION

Queueing is without doubt the most widely obser'ved phenomen in transport
processes vehicles at intersections, ships moving through a port,
tr'ucks using loading/unloading docks, passengers at baggage counters,
customers at telling windows and cash register channels, motorists at
toll ban'iers, aircraft approaching runways and numerous other' transport
operations, even relatively static ones such as parking. All these
traffic elements have a unique COlIlmon characteristic - their capacity
i"e, the maximum rate at which they can pass traffic, Queueing occur's
when trucks, ships, cars, peqple arrive in a more or less random manner
to use the facilities described above" Ihe manner of specifying
their manner of aI'I'ival must be time specific i"e, as a rate of arrival
or demand, Much philosophical and analytical confusion arises from
a failu!'e to distinguish clearly between the r'ate of demand and the
total demand"

Queueing systems fall into two main categories single channel and
multiple channel" Traffic flow facilities intersections, roads,
train tracks are included in the former; and terminal facilities
docks, service counters, parking lots the latter,

l~e theory of queues and waiting lines is rigo!'ously based on probability
theory and its. application at the turn of the century to traffic was due
to the pioneering work of A" K" Erlang, a Oanish scientist and
telephone engineer" It is not surpt'ising therefore that its initial
application was to telephone traffic problems. It was embraced world
wide and has been supported by an enormous literature of high quality,
t.fuat is surprising however is the limi ted use made of it in the field
of transport" The first two editions of the Highway Capacity Manual
make no use of it whatsoever and the current massive rhird Edition
accords it one passing reference. During the second half of the
century a good deal of repionee:ring has been can1ed. Qut by staff
and students of the School of Traffic Engineering ot the University of
New South Wales 0.2,3,4,5,6) and by some notable workers elsewhere (7,
8,9,10). Even so it does not seem to have been embraced with much
enthusiasm by the pt'ofessional traffic engineer and planner. Hence
the motive fat' this revisitation.

In a conceptual and philosophical sense queueing theory provides the
analyst and engineer with the Hooks Law or Ohms Law of traffic It
establishes the basic characteristic curve that r'elates the delay,
travel time or cost of passage along or through any tr:anspor't facility
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to the time intensity of the traffic demand.. This characteristic is
univerally applicable to the wide t'ange of tI'anspor t devices and
facilities mentioned above and is of the form shown in Figure 1. It
has very important geneI'al properties

Cb) Ihe non-linearity of these curves is accentuated as they move to
the right. This results from successive curves representing
flow situations in which the quality of the flow pt'ocess is
"better" either the demand stream is more regular and/or the
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All the curves 1n the queueing family are highly non-linear
at low values of the traffic intensity the extra delay (i.e. the
queueing delay), which t'epresents in a general way the inefficiency
of the flow or handling process will increase slowly at first
but as the traffic intensity approaches unity (Le" saturation)
the increase in delay is dramatic and at the onset of satu!'ation
becomes infinite even though the facility itse1£ may still be
passing traffic quite satisfactorily_
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service operation more unifoI'm" If both were "perfect" there
would be no queueing delay over the whole range of flow (no load
to full load); but as soon as saturation is reached the queue
would bUild-up indefinitely along the capacity asymptote

Ihese fundamental properties require that the flow process is statistic­
ally stationary Le" the mean demand rate remains steady over all time"
If this be so then the non-linearity results in a powerful feedback
influence that guarantees the stability of the flow operation by limit­
ing the demand on the particular facility by shifting some of it to
alternative routes or different modes or other destinations" In such
circumstances there would be no need to hiss out the teI'm traffic
congestion as if it wet'e a sin but instead consider the merits (or
otherwise) of the adjusted situation"

But in practice traffic demands do not persist indefinitely" However
as will be shown later even quite short overloads cause very rapid
increases in delay and the feedback effects are strong enough to
maintain stability by first causing the demand to spread-out in time so
as to maintain its instantaneous rate at just around capacity, The
implications of these impo!'tant considerations are intuitively under­
stood by professional transport operator· and the expet'ienced road user
who as a result resort to better time scheduling of their transport
activities. However at the political and bureaucratic planning level
the high degree of dependence of the voting public on the motor car
and the paranoia that congestion engenders all to oiten influences the
decision maker to opt for expensive and ineffectual solutions the
Sydney Harbour runnel Project is a good example of the need to fully
understand the implications of congestion feedback.

But quite apart from the basic conceptual significance of the queueing
theory rationale in overall transport system planning the detailed
analytical assessment and economic evaluation of nearly all transport
schemes and projects calls for meaningful calculations of operating
costs. These depend on the analysts ability to make accurate assess­
ments of travel times and delays under normal operating conditions i"e"
at traffic intensities below saturation. This !'eturn visit to the
queueing theory mansion has provided the authors with the opportunity
to look more closely at some of its treasures and to discover some new
ones.

IHE SIAIE OF IHE ART

rhe starting point for all queueing analysis is knowledge of the form
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of the distributions of the arrivals and the service times (time to buy
a ticket, pay a toll, start-up at an intersection)" These distribut-·
ions are many and varied but those for particulat operations and
processes are surprisingly "immutable"" Many such distributions have
been obtained experimentally by staff and students at the University of
New South Wales (5,6) The distribution function is generally of the
Gamma type and may be conveniently approximated by the Erlang family
shown in Figure 2. These distributions are particularly apposite for
queueing applications as they are very easy to generate for computer
simulation studies.,
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Fig .. 2 Family of Erlang arrival/service distributions

desc~'ibing parameters of the above distributions are the -

the mean arrival interval/service time, TBAR

the Erlang K Number which ranges fro ID 1 for an exponential
distribution to infinity for a uniform one.

aside fOI' the present peak and other highly time dependent
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(a) 1'he Er-Iang Loss Formula

A is known as the rraff ie Load.where A'" M*Y:

tasks which are influenced by many "independent" f.:ictol'S
checking a trolly of groceries, length of stay in a parking
space, baggage check-in tend to randomness (Le" K = 1),

practiced and repetitous tasks such as starting-up at intersect_
ions, paying a toll, boar'ding a bus have high Erlang Number's
and for initial calculations may be assumed to be constant (Le"
K = infinity);

demands it is generally safe to assume that the arrival distributions
are exponentially distI'ibuted. Service or handling distributions are
more varied but in the absence of specific data they may be conveniently
divided into two main categories

Ihe former are generally associated with traffic flow processes and
single channel operation and the latter' with terminal facilities with
many channels ..

10 facilitate comparisons of the per'formance character'istics the
independent variable is usually represented as the traffic intensity
which is the ratio of the mean arrival r'ate to the total capacity rate
(all channels and is designated her'e as Y. The output (Le" the delay)
is expressed in mean service time units IBAR.. The determining
parameters of the whole range of queueing devices then reduce to just
two the Erlang Number, K and the Number of channels, M" The
pr'incipal measures of perfor'mance are the average delay in the queue
WBAR and the pr'obability that the system is full, often known as the
Erlang Loss Pr:obability PL" Both are extremely useful for assess-
the economic merit of additional economic investment the former
especially relevant to flow facilities and the latter in the evaluation
of terminals ..

PL s «A"M)!Cl + A + (A"2)!(21) " ...... ".,,(A••M)!(MI)

There are three results of great significance to the analyst
philosophically, practically and computationally

This result is not only of great significance from a design point of
view but is also most useful mathematically in simplifying the many
computationaD.:yawkward formulae for multiple channel systems. It is
tabulated for a representative range of values of A and M in Table 1.
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Probability of Loss fot' Various Iraffic
loads and Channels

Traffic load Number of channels

A M = 1 2 3 4

01 9 05 0 0
02 17 2 01 0
03 23 3 03 0
04 29 5 07 0
05 33 8 1 02
0.6 38 10 2 03
07 41 13 3

I
05

08 44 15 4 08
09 47 18 5 1
10 50 20 6 2
20 67 40 21 10
30 75 53 34 21
40 80 62 45 31

(b)

I i
Traffic

,

Number of channels
load

A M = 1 5 10 20 30 40 50 100

1 50 03 0 0 0 0 0 0
2 67 4 0 0 0 0 i 0 0
3 75 11 0 0 0 0

I
0 0

4 80 20 05 0 0 0 0 0
5 83 28 2 0 0 0 i o I 010 91 56 21 02 0 0 i

l
20 95 76 54 16 08 0

I30 97 84 68 38 13 1 o 0
40 98 87 76 52 30 12 I 2 0
50 98 90 80 61 42 25 10 0

100 99 95 90 80 70 61 I 51 8
L_

Average Delav for all systems with random art'ivals and exporient­
ial service or handling times

DEAR = PD/ CM _. A)

where DBAR is the average delay in the queue in mean service time
units, SBAR;

PD is the probability of delay - a useful performance
measure in its own right; it is related to PL, viz

PD = M*PL/CCM - A*CI - PL»
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IHE NEW RESULTS

Ihe Erlang Loss For'mula
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system with exponential
the Pollaczek···Khinchine
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C is the coefficient of variation of that distributionj if
the distribution is approximated by an Erlang K curve then
C**2 ~ IlK and WBAR may be written

WBAR DBAR*{l + K)/(Z*K)

WBAR = DBAR*{l + C**Z)/Z

Ihe Average Delay for' a single channel
arrivals and any service distribution
Formula

where WBAR is the mean delay in the queue for' any service
distribution

(cl

(b) Is there a simple correction to the general delay formula that
would hold for any service distribution when the number of
channels is greater than one?

(a) Does the Erlang Loss Formula hold for non-exponential service
distr'ibutions?

(c) Can the arbitrary service time distribution in the Pollaczek­
Khinchine Formula be taken to include a deterministically
programmed sequence?

Ihe above remarkable results allow a very wide range of queueing
problems to be analysed" However there are three questions that are
not satisfactorily answered in the literature which militate against
the full universality of their application, viz

Ihese questions have been addressed in a heuristic manner and af£iI'm~'

ative answer's have been validated by extensive direct simulation.

Io test Proposition (a) a dt'rect simulation of the rejection probabilit­
ies of artivals ata single channel facility with constant service was
carried out and the results compared with the standard PL Formula which
is generally considered rigorously valid for exponential service.,
The results are summarised in Table 2"
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Probability of I,oss Comparison

Iraffic Intensity Erlang Loss Simulation
Formula of CSQ

0.5 0.3333 0.3243
0.. 9 04707 0.4663

The General Delay Formula

3 shows the results of a simulation study on the mUltiple queue
system with constant service and demonstrates a surprisingly simple
result" It is that the effect of regularising the service is the
same for many channels as for one" The importance of this is further

when it is noted that the queueing delay Is dominated
overwh,el,mingly by the number' of channels in the system falling to a

amount when the number exceeds 10. In view of these
it is clear that the general fot'muIa given in (b) above would

closely approximated for all queueing situations with exponential
and any Erlang service distribution by introducing the

1 • K)/C2*K) factor of the Pollaczek-Khinchine Formula, viz

~ (PD/(M-A»*CCI+K)/C2*K»

Service limes

r::~.~~;,~;;~n as to whweher a programmed sequence of service times
le an "ar'bitrar'Y" distribution is a subtle one. It is

less a challenging one particularly as it opens the way to a
solution of the intersection delay problem. The many
to solve it range from the nltionally based approximations of
Miller, Newell, Blunden to the ingenious curve fitting effort

pl""s"nt:ed in the new Highway Capacj ty Manual. Her'e we investigate
direct application of the Pollaczek-Khinchine result by regal'ding
sequence of short constant start-up headways during the green

%It.rv;' followed by a long depar'ture service time equal to the red tiDle
be an arbitr'ary serVice time distribution" On Fhe basis that

a sequence is deterministic it seems reasonable to assume that its
'{ari'.n,,. is zero i.e. K = infinity.. Ihis assumption has been tested

a representative range of service time sequences. The mean star't-
or' mean "service "time is I'eadily calculated, viz
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Fig. 3 MULTICHAN Simulation Results
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c Is the cycle time (seconds)
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g is the effective green time ratio.

SBAR • (INT( s*g*c/3600)*3600/S) +0~g)*c)/(INI(S*g*cI3600)+ J)

where s Is the start-up I'ate of the approach lane (vehicles/houd

The delay peI' vehicle, DBAR is then g1yen by -

DEAR' IBAR*O .. Y/(2*0 - Y»



effective green time I'atio 0,5
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Intersection Simulation Results

1500 vehicles/hollI/lane

lable 3

60 seconds

75 to 675 vehicles/hour

20 runs of an hours actual duration for each flow"

Average Y Sim'l'd Std,Dev P-K HCM WebsteIFlow Delay Formula

75 0,1 9 86 2,36 4" 77 6,00 7,28
150 0,2 10,28 2,39 509 6,34 8,11
225 0,3 1047 2,32 5,49 6 74 8,89
300 0.4 11 28 2, 48 6, 01 7,22 9,86
375 0,5 12" 05 2 , 67 6,,78 7,83 lL21
450 0.6 13, 30 2,92 7.92 8,64 12,91
525 0,,7 14,63 3,23 9,87 9.80 15,,39
600 0.8 17, 85 4,76 13,,57 lL75 19,91
675 0.9 24 84 9,15 24,88 15,,97 31.51

start-up capacity

This result together with some other well known intersection delay
results and the new Highway Capacity Manual Formula are compared with
those of an extensive simulation study in Table 3. Ihe simulation
was carried out on an intersection approach with the following operat­
ional characteristics

cycle time

flow range

simulation

The Overloaded Intersection

this problem there is much confusion. It has been made clear'
in this paper that overloading for an extended time period is

vlrttJaJ.ly impossible. Short term overloads of some 10 - 15 minutes
seem common enough in urban traffic. Even so it is very difficult
decide whether these peaks ar'e true overloads or in the context of

a two hour busy period they ar'e 11 t tIe more than random
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* Ihe Highway Capacity Manual Formula is calibrated for an assumed
15 minute overload period only.
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Ihis is a surprisingly simple result when one considets the the curve­
fitting ingenuity used in obtaining the new Highway Capacity Manual
Formula and that produced by the Australian Road Reseal'ch Boar'd fat'
local application. Once again the validity of this result was tested
by a simulation study and the results are summarised below in Table 4

Simulation Study of an Overloaded Intersection

(1 - g)*c/2 + (Y - 1)*T/2

Table 4

-

~
atio

1.1 1.2 1..3
Time
(mina)

SIMtL'N 53 .. 0 79,3 125,6

15 DBAR 60,0 105.0 150,0

HO! 64.5 121.5 198,2

SIM'LtN 92.5 169,4 250.1

30 DBAR 105 .. 0 195.0 285.0

HO! * * •

SIMtLtN 133.2 2779 470.9

60 DBAR 195 .. 0 375,0 5550

HO! * * •

SIMtLtN 245,2 561.9 875,7

120 DBAR 375.0 735 .. 0 1095,,0

HO! * * *

DBAR •

fluctuations anyway" However without debating this difficult issue in
mOI'e detail here it is pertinent to note that if serious overloading
does in fact take place deterministic queueing models provide a sound
rationale for theit' analysis" For an intersection approach or any
other facility opeI'ating at a Y value in excess of 1 for a period of
time T seconds the average delay per vehicle may be written





Bl UNDEN, VAND fBO NA

REFERENCES

1 Blunden, W R and Black, ,] A (1984) Ihe land-use Iransport System,
2nd Ed, Pergamon Press, Sydney"

2. Jones, J Hand Blunden, W R (1968) Ship I'u!'n-around Time at the
Port of Bangkok, ,Journal of Waterways and Barbors Division,
Proceedings of the AmeI'ican Society of ClviI Engineers, vcl 94
WW2, pp135-149,

3. Pretty, R Land Blunden, W R (1964) On the Computer Simulation of
a Single Channel Queueing Facility for a Wide Range of Arrival
and Depal'ture Distributions, Proceedings of the Australian Road
Research Board, vcl 5, part 1, pp248-260.,

4" Alfa, A S, Black, J A and Blunden, W R (985) On the Iemporal
Distribution of Peak Traffic Demaands: A model and its Calibration,
Forum Papers, 10th Australian TranSpoI't Research Forum, vol 2
ppl-18 ..

5. Blunden, W R (966) On the Iraffic Effects of Frontage Land-uses
on U!'ban Main Roads and Arterials, Proceedings of, the Australian
Road Research Board, vo13, part 1, pp158-182"

6" Miller, A J (968) The Capacity of Signalise.d Intersections in
Australia, A4stralian Road Research Board Bulletin No 3"

7, Brockmeyer, E, Halstrom, H Land.Jensen, A (1960) Ihe Iife and
Works oiA. K. Erlang, Applied Mathematics and Computing Machinery
Series, No 6 (Copenhagen: Acta Polytechnica),

(.,,, Lee, A M (1966) Applied Queueing Iheory (London: Macmillan)"

SI" Webster, F V 1958) Settings for Fixed-cycle Iraffic Signals,
Road Research Laboratory, Technical Paper No 39, London.

10., Newell, G F (1960) Queues for Fixed-cycle Iraffic Lights, Annals
of Mathematical Statistics, vol 31, no 3, pp589-604"

768


