A.S. Alfs

Department of Civil Engineering
University of Manitoba

J.A. Black

Department of Transport Engineering
Schoot of Civil Engineering

University of pNew South Wales

W.R. Blunden
University of New South Wales

ABSTRACT.

The paper reports on Pesearch that deve

mechanism of peak s
experimentally.,

condueting sensitivity analyses to s

management schemes .
coefficients o

Implications f
are suggested.

ON THE TEMPORAL DISTRIBUTION OF
A MODEL AND ITS CALIBRATION

PEAK TRAFFIC DEMANDS

dney 's major
€, are used o cqlibrate the

that inelude renalties for bai

in the traffic stream.
ngineering and plamiing praet

imulate the effects of traffic
Peak-hour tvaffie data for Sy
bottleneck, the Sydney Harbour” Bridg.

f transport impedanice
early, being late and being delayed

or current transport e

tng

Lee




ALFA, BLACK AND BLUNDEN

Or in the night, imagining some fear,
How easy is a bush suppos'd a bear!

( Midsummer-Night's Dream, Act V, Scene I}

INTRODUCTION

The fear of road traffic congestion is one impertant driving £force behind
freeway and expressway proposals for new urban areas. Although the estimation
of probable peak-hour fiows on a given facility is a complex task, transport
engineering practice relates the intensity of this traffic demand to a fixed-
time period by applying empirical rules of thumb {peak~hour ratiog) that
@alculate design~hour volumes as & proportion of total daily traffic. Not
only does thig lead to arbitrary facility design in terms of the number of
traffic lanes required, as shown by Shallal and Khan {1980, Table I, p.76),
for instance, but it ignores the mechanism of peak spreading. Without an
understanding of this temporal distribution of traffic, it is easy to see why
a bush becomes a bear (see, Biunden, 1982). This neglect of the temporal
distribution of traffic is a problem of practical consequence because a demand
rate must be specified for traffic assignment purposes.

Although we have an empirical picture of the temporal distribution of
road traffic during a rail strike (Clunas, 1884), research was directed
towards developing a rationale for the mechanism of peak spreading of traffic
and validating the model experimentally. Intuitively, a given demand on a
transport network must spread itself over a finite time - a great deal of data
have been compiled on the extent of the rush=hour duration and its peaking
characteristics in cities of different size (Peat, Marwick, Mitchell and Co,
1972). Blso, pianning emphasis on making better use of existing transport
facilities instead of constructing new ones (Remak and Rosenbloom, 1976, 1979;
Rosenbloom, 1978) involves the alteration of work schedules as an important
pelicy inmstrument in alleviating congestion by flattening the peak-travel
demands (Julian, 1971; O'Malley and Selinger, 1973; Trangportation Research
Board, 1980). In predicting the effect of such changes in work schedules on
rraffic congestion it is helpful to have a theoretical understanding of how
the peak demand develops and the phenomenon of peak spreading.

The model proposed takes, as a starting point, the proposition that
commuters seek to minimise 'transport impedance' and in doing S0 may vary
their starting times for a journey~to-work. Unlike the cohventiocnal
behavioural approach that represents transport impedance by the generalised
cost of +travel, +this ‘approach assumes that travellers attach ‘cost
coefficients' to being early, to being late, and to delays in the traffic
stream. Therefore, it is an individual optimising model in the tradition of
Wardrop (1952} and owes inspiration to the work of Gaver (1968) and Minh
(1976) .

A bottleneck situation on the transport network is used to articulate the
model, although this simplification does not affect the generality of the
theory. By specifying a target time, or a distribution of target times, at
the bottleneck, the travel time from the home to the bottleneck is ignored (or
assumed to be a free~flow travel time). 3In effect, the distribution of the
departure times from home is identlecal to the distribution of the arrival
times at the bottleneck. Similarly, the travel time from the bottleneck to
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the workplace is ignored and the departure times from the bottleneck become the
arrival times at the destination. A bottleneck situation with time measured
in epochs is especially convenient for data collection and model calibration,
as demonstrated by our case study of the Sydney Harbour Bridge.

The Sydney Harbour Bridge ~ 1149 m long, including approach spans = is a
major bottleneck for Sydney commuters travelling across the Parramatta River
and therefore is a suitable case study example for the application and
calibration of our model. The steel-arch {503 m span} bridge itself is a
celebrity (Spearritt, 1982) being both a household name for Sydney residents
and a distinctive landmark for wvisitors, and having celebrated its fiftieth
birthday on 12 March, 1982. The designers of the 1920s estimated the capacity
of four railway lines, six road lanes and two footways as 160 trains per hour,
&,000 vehicles per hour and 40,000 pedestrians per hour. Records of the
Department of Main Roads, New South Wales, for 1280 show the average annual
daily flow of 158,850 vehicles with a maximum daily flow of 200,500 wehicles.
With tidal flow operations, the maximum hourly flow (in the morning)} was
10,850 vehicles in the direction of the major flow (southbound intoe the CED)
and 4,340 vehicles in the direction of the minor flow (northbound).

Before presenting the results of our investigation, the Ffirst section
describes the structure of the model and defines the key parameters. This is
done only in ocutline form in this paper: the important equations are given
without discussion because the full details of the stochastic model of the
temporal distribution of peak traffic demands have been explained elsewhere
(Alfa and Minh, 1979}. This model by Alfa and Minh can be reviewed in the
broader literature on departure times, journey times and waiting times.
Abkowitz {1981) and Small (1982) used logit models to study the choice of
departure times but their approaches were empirical. Whereas these two models
could estimate the effect of travel time on the choice of departure times they
did not imclude how changes in the choice of departure times affect travel
times. More recently De Palma (et al, 1983) alsoc used a logit model to study
the same problem. The interdependence of travel time and choice of departure
times was included in their model, but they used a deterministic queueing
model for estimating the waiting time. Although all these models were based .
on a stochastic approach, the waiting time models used were deterministic.
Vickrey (1969}, Hendrickson and Kocur {1981) and Fargier (1981) all followed
the user-equilibrium approach to study a similar problem, but, again,
deterministic queueing was employed to estimate the waiting time. (Note that
Henderson (1977) later generalised Vickrey's model inte a non- gueueing
general congestion situation.) In contrast to these approaches, the stochastic
model presented by Alfa and Minh {1979) was set up as & Markov chain, and a
stochastic gueueing model was uged to estimate the waiting time.

In this paper, the original contribution is the presentation of the
results of sensitivity analyses conducted with the model: the effect on the
temporal distribution of traffic by {a) c¢hanging the demand; (b} altering the
capacity of the bottleneck; (¢) altering the target time at the ultimate
destination (staggered work hours, flexitime); and (d) agssuming different cost
coefficients for being early, late and delayed in the traffic. Calibration of
these cost coefficients, using authentic traffic data collected in Sydney, is
demonstrated. Impl ications for transport engineering practice, when the
objective is to make more efficient use of existing resources, are explored in
the concluding sectiaon.
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THE MODEL

The model for the distribution of arrival times at the bottleneck is of the
kind developed for headstart strategies to overcome the variability of travel
times in meeting a destination target time. although its wathematical
formulation has been described fully by Alfa and Minh {1979}, its specific
application here to 'rush hour® traffic situations calls for a presentation of
the model's definitive equations. The prime purpose of the model is to yield
a limiting pattern of arrival rates (demand intensities) over a finite time -
that is, a busy period ~ that will minimise the perceived cost to the user of
a commuting (or scme other repeated access) exercise.

Commuters take account of costs associated with departing from home
early, arriving at work late and being delayed in the traffic over and above
the 'zero-flow' travel time of their journey. By ignoring the zero-flow
travel time, the arrival distribution of the input to a transport network is
synonomous with the departure from home and the departure distribution with
arrivals at the destination. Earliness and lateness may then be measured by
the time intervals between arrival and departure and a specified time, T, the
target time. The transport network is considered as a single channel queueing
facility with capacity equal to that of the network, as may be determined by
the maximum flow/minimum-cut theorem of Ford and Fulkerson (for example, see,
Blunden and Black, 1984).

In the context of transport management and planning, an important feature
of the model is that its principal input is the total demand I+1, comprising a
typical commuter plus I other commuters. The arrival of the commuters is time
dependent. The queueing model is established in a discrete time scale made up
of equally-spaced epochs numbered 0,1,2...N, which allows us to use the
discrete time queueing model developed by Minh (1277). It is assumed that all
commuters arrive and depart at instants immediately prior to these epoch
units. We designate the typical commuter as A, and suppose that this commuter
ig identical with, but acts independently of all the others. The decision
making strategy is illustrated with reference to thig typical commuter. In
making this journey on day, d, the commuter arrives at the hottleneck adt
epoch, n, and experiences a delay of i-(epochs) in the queuwe and thus would
depart from the bottleneck at epoch n+it+s, where § is the service time. There
are three mutually exclusive situations:

(a) nti+S ¢ T, and A arrives at the destination early by an amount T-n=-i-S,
and attaches a cost Ce(n,i) for so doing;

{b} nt+ti+s > T, and A arrives late by n+i+S—T time units and so incurs a cost
Cgi{n,i}; and

{¢) mti+sS = F; A arrives on time.

In addition, A attaches a cosgt Cm(i) for delay in the traffic, a factor not
considered by Gaver (1968}.

The total perceived cost of A's commuting circumstances, C(n,i) is given
by:

Ce (n,i) if n+i+8 < T
C{n,i) = Cw (i) + 0 if nti+s
Cg (n,i} if n+i+s > T.

]
=]
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Commuter A now decides to ‘experiment' by changing the time of arrival at the
bottleneck (or, in other words, departure from home) to epoch, m, hoping that
the conseguent delay, j, will result in a total perceived cost, C{m,j)} that
results in {C(n,i) - C{m,j)}. being greater than or egqual to zero. If the
delay is not reduced, a different arrival time is chosen. This benefit
measure is designated as:

[Cln,i) - cm,j)17

where [o. ..]+ indicates it is taken into account in the model only when
positive.

How A decides on a value for m that will improve the journey for the
following day is described in Alfa and Minh {1979). It will suffice here to
define w.g(d) as the probability that A experiences a delay of i, given arrival
at epoc‘é, n, on day, d. The anticipated reduction in cost, dn,m{d) by
changing to epoch, m, on day, d+1, may be written:

x5 IxsS

; . n m
b by [C{n,i) - ¢{m,j}] W, (d) Wj(d+1)‘
j=0 i=0
., Commuter A must estimate WO (d+1} and the only plausible basis for doing this
is to assume that the othHer 1 commuters do not change their arxival process
“for -the following day and so the delay distribution is the same as day, d. We
write ‘q_n m(d) as a meaningful estimate by A of 9 m(d), and so

’ ’

IxS IXS +
b £ [cin,i) - ¢(m,3)] w‘;(d) wia)
j=0 i=0 J

_-"where, W;“(d) is A's estimate of w;n(d+?)'.

On the basis of these estimates, A considers a benefit is derived from
.'_:changing from epoch n to m if 4, (4} > 0 (Rlfa and Mink, 1979, ».321). From
‘‘now. oan A can lose identity and become just one other commuter with a
transition probability, t {(d); of changing to epoch, m, on day, (d+t), given
‘that the commuter arrived At epoch, n, on day d4:

N
4 D /T w (),

m=1 !

SIE 'ia_r'é now let the distribution of arrivals on day, d, be:
@) = mya, ny (d) emy (4)]

= ?h._a commuter's arrival time on day (d+1) may be set up as a classical
Markov chain:

Ota+1y = n¢a) x T(a).

The: sensitivity of iim E(d) to the main parameters of the model is studied in

Ehe next section bib before doing so we present in Table 1 the results of a
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typical iteration path from an initial distribution of arrivals that is
assumed to be uniform. In this worked example, N = 10, I+1 = 5, T = 8 and the
relative cost coefficients are Ce = 1, C = 2 and Cy = 4. The smooth ang
rapid convergence of the model provides a measure of validation of its
'mathematical’ structure.

Table 1. A Typical Path of Iteration of Arrival Probabilities by Epochs

Epoch Arrival Probability, M, at Each Iteration
n Start lst Znd 3rd 4rh 5th 6th Tth 8th th
1 01000 0.0257 0.0408 0.0337 0.0360 0.0353 0.0355 ©.0355 0.9355  0.0155
2 0.1000  0.0405 0.0579 0.0507 0.0531 0.0524 0.0527 0.0526 Q.0526 0.0526
3 0.1000 ©0.0620 ©Q.08l5 G.0743 0.0765 0.076% 0.0760 0.0760 0.0760  0.0760
4 0.1000 0.0943 ©0.1140 0.1064 0.1086 ©0.1082 0.1082 0. 1082 0. 1082 0. 1082
5 0.1000  0.1348  0.1490 0.1411 0.1437  0.1433  9.1433 ©6.1433  0.1433  0.1433
6 0.1000 0.1905 0.1839 0.1793 0.1825 0.1814 0.1816 ©.1816 ©.1816 0.1816
7 0.2000  0.2443  0.1757 0.1967 0.1927 0.1925 0.1930 0.1928 0.192% 0 1928
8 0.1006  0.1268 0.0960 0.1195 0,1094 0.1125 0.1118 0.1118 0.1119 & 1119
9 0.1000 0.058% 0.0631 0.0667 0.0638 0.0652 0.0647 0.0648 0.0648 0 0648
10 0.1000 0.0228 0.0381 0.0319 0.0337 0.0333 0.0333  © 0333  0.0333 0.0333

(Note: N=10; I+1=5; T=8; Ce=l; Cp=2; and Cy=4)

SENSITIVITY ANALYSIS OF MODEL PARAMETERS

In the conceptual model the parameters that determine the pattern of the
temporal distribution of peak traffic demand are: the total population of
commuters; the capacity of the transport element; the time that commuters wish
to arrive at their destination; and the perceived cost that commuters attach
to earliness, lateness and delays in the traffic. This gection examines how
each one affects the temporal distribution of peak demand, how some of them
can be contrclled to reduce traffic congestion, and shows the method to
estimate the cost coefficients for each situation. The number of commuters
and the saturation flow rates are known but the target time is known only
implicitly and the cost factors are not known and require calibration.

The Number of Commuters

Results from the model show that when the total number of commuters increases
the number of arrivals at each epoch increases at the bottleneck but that the
percentage increase in the number of arrivals at each epoch is greater during
those epochs with a lower initial demand rate. The mode of the peak demand

tends to shift slightly te an earlier time epoch, as dJdemonstrated by the
following worked example.
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system with a capacity of 200 commuters per unit epoch over

consider a
: 15 and let T = 10. Suppose all the users of this system attach

od N =

Goste with the rates .$‘l~00, $2.00, and $3.00 per unit time to
ess-: 1ateness and delays in 1-?he traffic, respectively. For pepulations
n.. 800 and 1200 commuters, Figure 1 shows the temporal distribution.

sading of the demand rate as the total demand increases confirms the
sP_r_el_Y cbvious motion of a self-regulating system.

1200 commuters

200 commuters

400 commucers

Expacted Number of Arrivals at Epoch, m -

Epoch. n

The Effect of Changing the Ietal Number of Commuters on the Temporal
Distribution of Peak Traffic Demand

Change Capacity

, for illustrative purposes, suppose a bottleneck has a capacity of 100
ehicles per minute and that 6000 commuters all wish to depart the bhottleneck
8.30 am in order to arrive at their destination at the desired time. fThe
ystem is observed for two hours betwsen 7.10 am and 9.10 am. The spacing of
heé epochs is 10 minates, so N = 12 and a satisfactory result for the commuter
.5 departing the bottleneck at either epoch Tl = 8 or T2 = 9. If we further
ssume that all the commuters attach linear cogts of $10,00, $20.00 and $5.00
er. unit time to earliness, lateness and delays in the traffic, respectively,
hen the resulting temporal distribution of traffic demand is shown in Figure

: If the capacity of the bottleneck is increased to 120, to 150, to 200 and
‘then to 300 vehicles per minute, the resulting four distributions of traffic
emand are calculated and are shown in Figure 2. an increase in capacity
encourages a further intensification of the beak demand rate, although the
“duration of the total demand is reduced.
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3000
/ ~.
l\ \\“ 300 veh/min
A=

2000 / \ s 200 veh/min

(AL
\ \‘_\_\__s— L50 veh/min

veh/min

veh/min

1000

Expected Number of Arrivals at Epoch, n

Epoch, n

Figure 2. The Effect of Changing the Capacity of the Bottleneck on the
Tempotral Distribution of Peak Traffic Demand

The Target Time — Staggering, Flexible Working Hours

The effect of the target time on the temporal distribution of traffic demand
is obvious because any shift in the position of that target time in a real
time axis merely shifts the whole temporal distribution of traffic demand by
the same amount and in the same direction provided that the time range, W, is
defined to be long enough. However, its effect on the position of the mode of
the peak of the traffic demand depends on the value of the cost parameters.
Generally, this mode occurs at some epochs before the target time: the higher
the cost for late arrivals then the more will this mode move to earlier
epochs. The reverse happens when the cost for early arrivals increases.

Let us define two time epochs T| and T, between which commuters are free

to start work. ‘the total cost incurred by a commuter under this scheme would
be:

Ce(n.i) ;  if n+i+s < Pl
C{n,i) = g, (i) + { ] P if T) € ntits € T,
- C,g“(n,i) ; 1if n¥i+s » T2.

In order to introduce flexible working hours into the analysis the cost
structure has been modified. Intuitively, we would expect that flexible work
hours should result in the peak demand being more spread out, provided the
cost attached to delay is not zero. The time that the mode of the peak demand
occurs will be shifted to the left or to the right depending on whether the
cost attached to lateness is greater than that attached to earliness or vice
versa. ’
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The base case ig a system where 4000 commuters wish to depart from a
bottleneck at 8.30 am in order to arrive at work on time. The saturation flow
at the bottleneck is 5p vehicles per minute and N = 20 and T = 15. Instead of
having this target time T = 15, flexitime can be introduced by taking a range
between T, = 13 ang Ty = 17. Figure 3 shows the arrival distribution at the
bottleneck for the base case and for flexible working hours. The effect of
flexible work hours seems to be beneficial in terms of reducing the peak, at
least for the example considered here (the value of the cost parameters

Normal

s 0
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Flexible
Hours
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The Effect of Variable Working Hours on the Te
Oof Peak Traffic Demand

are classified into groups who are required to

time. Let the number of such groups for a

fine ¥ 1o be the target time of group, g, (1t

Y. The Proportion of commuters in group g is pg, such that g pg=1, and
. g=1

N _bfl_'_l:l)g be the total cost to a commuter of group g type, given arrival at
_ttleneck at epoch, n, with delay of i units of time, such that;

" Coln, i) if nti+s < 19
Cn,i)g = Gyl + L 0 if n+i+g = p9
Cpln,i) if n+it+g > 79

cbns. ROIR )
_.d L the typical commuter A once more: the probability that a belongs to
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group g is given by p . Therefore, given that the commuter arrive

d at the
bottleneck at epoch, n, and was delayed i units of time, then the total Cogt
incurred, €(n,i), is given bLy:

G
Cn,d) = % p_x ¢lmilg.
g=1 7

By assuming that each one of the commuters in the G

manner as A, the problem can then be formulated a
target time.

group behave in a similay
S in the case of a single

The base case is defined as before b?t instead of having one target time,

let us have G = 3, T = 13, T2 = 15 and T° = 17 and also let Pl = pP3 = 1/4 ang

Py = 1/2. Figure 3 shows the results of the analysis: staggered working hourg

relieve the congestion broblem during the peak period, although not by as much
as in the case of flexible work.

Commuters having different destinations situated after the bottleneck cap
be also approximated by the same model as for staggered working hours,
provided that queueing does mot occur after the commuters depart the
bottleneck. By grouping those commeters with a common destination, and by
knowing bothk the time they wish to arrive at their destination and the

remaining travel time after they depart the bottleneck, the time they would
like to depart the bottleneck can be obtained.

Cost Coefficients

It is plausible, though worthy of verification, that commuters attach
different perceived costs to earliness, lateness and delays. However, as we
shall be discussing the dggregate values of these coefficients for all the
popuiation using a particular system, -commuters are all assumed to have
identical values. The magnitade and functional forms of these values affect
the temporal distribution of the peak demand in terms of the positioning of
the mode of the peak and the spreading mechanism of the demand. There are
only two things we know for certain about these cost coefficients: one, the
costs to earliness, lateness and delay increase monotonically with the amount
of time a commuter is early, late and delayed, respectively; and two, that
Caln, T-n-s) = p, Cz(n, T-n=8) = 0 and Cui0} = 0; for n+s <T and n,S,T »0.
Provided that all these conditions are satisfied, the model is able to

reproduce the general pattern of the temporal distribution of the peak traffic
demand noticed in mogt traffic systems, irrespective of the magnitudes or
functional forms assumed for the cost parameters.

For example, consider the base case in the previous sub-section and
suppose that instead of the costs being linear they are proportional to the

Square of the amount of time the commuter is early, late or delayed,
respectively. That is:

C (n,i) = C, % {T-—n—i—S)2
Cpln,i) = Cp x (n+iél-S-T)2 7 and
Cm(i) = G, x (4.

The resulting arrival time
linear costs in Figure 4.
slight variation to the sprea

distribution from this is compared to the one with
The same pattern of traffic is produced with a
d and the position of the mode of the peak.
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sook Quadratic /
cost function

;Linear cost
function

Expected Number of Arrivals at Epoch, n

Epoch, n

The Effect of the Functional Form of the Cost Parameters on
the Temporal Distribution of Peak Traffic Demand

Figure 4.

‘The. magnitudes of these cost coefficients, on the other hand, do affect
isignificantly the position of the mode of the peak and the spread of the
‘demand. If the cost that the commuters attach to each unit time of delay
ivicreases, it is natural that they will try to avoid long delays more often
a.nd thus further spread their demand over the time so as to reduce their
elay.. In addition, if the cost that they attach to lateness increases they
'_wi.'ll. prefer to arrive at their destinations earlier than run the risk of being
late. Hence, the whole distribution of the temporal traffic demand will be
shifted to an earlier time (i.e. shifted to the left). Conversely, 1if the
05t to earliness is increased, the distcibution would shift further to the

As previously, the base case, a, is with (G, = $1, cy = $2 and G, =
Consider example b, in which the cost for delay is increased to $50.00 per
unit' time, and otherwise let everything else remain as in a. Consider

Xamples ¢ and 4, in which the cost for lateness is increased to $50.00 per
init time and the cost for earliness is increased to $50.00 per unit time,
respectively. Figure 5 gives the resulting arrival distributions that show a
arked difference in shape for the four cost assumptions. The implication of
hi_S_-_ is that knowledge of the fancticnal forms, and in particular the
agnitudes of these cost parameters for any peak traffic situation, is
mperative if our model is to be used for predictive purposes. A study of
His: problem is reported in the next section.




ALFA, BLACK AND BLUNDEN
1000
lp\r'“cewiﬂ; Cp = 2;C,=3
by
|
!
|
750 | l
}
{
f

500

Expected Number of Arrivais at Epoch, n
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i 1_—-‘( i ! . I " 1 Rl
&4 6 & 10 12 14 16 =3 20
Epoch, n

_Figure 5. The Effect of Changing the Cost Parameters on the Temporal
Distribution of Traffic Demand

ESTIMATION OF THE COST PARAMETERS

Model Calibration = Procedure

Much coutd be said about the functional form of the cost parameters (alfa,
1979, pp. 87-91} but here we merely state that:

Ce x {T=-n=i=-8) ;j for ntits8 € T
C{n,i) = Cw(i) + {

Cp x (nt+i+s-T} i for nti+s 2T,

The parameter estimation was carried out using the method of least squares.

The method assumes that there is an arrival probability vector ﬁ estimated
from the arrival distribution observed at the particular major bottleneck. -
Also, for any given values of Ce, C, and C , there exists a probability vector -
[I that can be evaluated for that particular bottleneck using O=1Ix I. The '
estimated values of these cost parameters that describe the traffic at this @
bottleneck are those values that minimise U, the sum of the squares of the :
differences, between Il and i, where:
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U

= M- x (-

and ( )T denotes the transpose of the matrix in the bracket. Minimising U can

onty be achieved by a numerical method, which requires considerable
computation time.

However, the number of iterations, and hence the computation time
required, was reduced by eliminating one of the unknown variables. As we are
only interested in the relative trade-offs between the cost coefficients,
knowing the values of two of these coefficients relative to the third provides
us with sufficient information. Therefore, let C. = 1 and define the costs Cyp
and C 1in terms of Cq with the assumption that Cs 2> 0 in real life. Al though
this modification will change the values of "c'ln - it will not affect the values
of tn’m and does not change the structure of the problem. The calibration
problem is an unconstrained, bivariate non~linear optimisation problem (alfa,
1982) . The partial derivatives of the objective function, U, with respect to
these two variables Cy and Gos cannot be obtained analytically. The method
developed by Powell (1964), which does not require calculating the function's

derivatives, was used - the computer program for this method is available in
Kuester and Mize (1973).

.+ Estimation of the Cost Parameters, Sydney Harbour Bridge

All of the travellers using the Sydney Harbour Bridge during the peak period
are assumed to be commuters. Collecting the data of arrivals at a bottleneck
where the gqueues that develop can grow to a great length requires a lot of
field workers situated at different points before the bottleneck in order to
crecord arrival counts at the .and of queuve that keeps fluctuwating in its
" position. The data were collected in 1977 on the Cahill Expressway as it
. approaches the bridge entrance. Both the number of vehicles that arrive at
-and depart from this bottleneck were recorded from the time the peak period
queue began to build up at 7.30 am up to the time it dissipated at 9.00 am.
The departure rate was used to compute the capacity {saturation flow) of the
-lanes at the bottleneck. The capacity of this section of the expressway, at
“the- bridge, is approximately 65 vehicles pexr minute and the total demand
-during this peak period was about 5,753 vehicles.

_ By defining epoch spacings as 10 minutes then N = 9., Al though southbound
~traffie has different destinations, they were grouped into four distinct
geographical zones as shown by Figure 6. The average travel time between the
‘adjacent zone centroids is assumed to be 10 minutes. A commuter with a
‘destination in zone g (g = 1,2,3,4) belongs to group g. 1If every commuter

must reach their respective dJdestinations at 9.00 am then those whose

estination is in zone 1 will want to depart the Harbour Bridge at 8.50 am and

hose for zones 2, 3 and 4 at 8.40 am, 8.30 am and 8.20 am, respectively.

0 I Cin,ilyg is the total cost to a commuter of group, g, then:
' 4

Cin,i) = L p_x Cln,i)g
g=1 ¢

is the ratio of those belonging to group 9. A morning peak origin-

n traffic study in 1974 (Clarke Gazzard Voorhees, 1974) gave, for
t.h._e zaning system in Figure 6, wvalues of p; = 0.1099; P, = 0.2569; by =
0:4766; ana p, = 0.1566. '
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Pacific

i

E‘igﬁre 6. The Destination Zones of the Southbound Sydney Harbour Bridge
Traffic Travelling on the Cahill Expressway during the
Morning Peak Period, 1977.

The calibration of the model gave the following estimates:

Cw = 7.5; and U= (.000358.

The aggregate cost attached to lateness is about 1.35 of that attached to
earliness for the commuters employed south of the bridge and residing north of
it. However, they attach about seven and a half times as much to delay in the
traffic. The fact that a commuter's lateness or earliness to work depends on
his ability to predict the anticipated delay, gives us ground. to suspect that
the cost attached to delay is very much higher, and more dominant, than either
one of the other costs. The least squares curve of the arrival probability I,
estimated using C; and G, is shown in Figure 7a where it is compared with
actual traffic data.

The data for the northbound traffic were collected a year later, but in
exactly the same manner. The saturation flow of the bottleneck studied was
about 28 vehicles per minute and the total demand during this peak-period was
about 2800 vehicles. Much of this northbound traffic is travelling to North
Sydney, which is an extension of the Sydney CBD on the north shore of the
Parramatta River. Here, one destination zone is assumed where the travel time
within the zone does not exceed 10 minutes. Again, if it is assumed that each
comnuter must reach their destination at 9.00 am and it takes 10 minutes to
travel from the bottleneck exit to this destination, they have to depart the
bottleneck by 8.50 am.
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Figure 7. Arrival Probabilities for (a) the Southbound Traffic on the
Sydney Harbour Bridge, 1977 and (b) the Northbound Traffic on the
Sydney Harbour Bridge, 1978.

6.0; and U = 0.000729.

e lﬁast"squares curve of the arrival probability, 1, is plotted in Figure
g “??e_relatively high values of C_ show that althoﬁéh commuters do not wish
arr}yg at work late or too early, the most undesirable aspect of the travel
xcessive delay in the traffic stream. This leads to the conclusion that
commiters would rather arrive at work early than be late or be delayed
£3:1°n9 time in the system, because ER > 1 and ﬁn {> 1) is quite large. In
g Q@e of them, if necessary, would settle for a bit of lateness if by
" they could reduce, by a considerable amount, the excessive delay they
ncounter, because Gy/Cg > 1. This supports what is intuitively obvious

11 documented in peak-hour traffic studies cited in the introduction: as

Otalrdemand increases it will spread itself out temporally rather than
fying further.
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CORCLUSION

The results obtained on the sengitivity of the commuting exercise to total
demand level, transport capacity, target time arrangements, and perception of
costs confirm the every=-day experience of road users and traffic management
professionals alike. In the axrea of planning, the underpinning of the sel f-
adjusting nature of the demand rate pattern by the theoretical model is of
special importance, notably the relatively high value of perceived cost of
excess delay in the traffic stream itself. The importance of the extra delay
over and above the 'free flow' travel time suggests that unwanted delay is a

force that spreads the peak ~ even without formal flexitime or staggered work
hour arrangements.

This finding has implications for the behavioural specification of the
generalised cost of travel by private vehicle as applied in transport system
anaiysis and planning. Conventionally, total door-to=-door travel time enters
into the equation for generalised cost and is then converted into monetary
units; our model indicates that there should be a distinction between ‘normal’
travel time from the origin and destination and the extra delay resulting from
the fiow-dependent nature of travel times. Whether or not cost coefficients
for being early or late should alsoc enter into the evaluation criterion for

peak=hour transport facilities is a matter for further study and
congideration.

There are alsc implications for traffic assignment practice and highway
design, and this too is an important topic of further research. As noted by
Teply {1982, p.76): 'Although some past models attempted to include certain
elements of feedback, no comprehensive treatment of the problem exists.' Any
unmodified application of our model to a network of many origins and
destinations would be cumbersome and Al fa (1984) lists possible directions for
further work. A procedure for estimating flows and travel times in networks
with multiple origin-destination pairs and with time-varying demands is a
brereguisite to a generalisation of departure time choice models.

However, the authenticity of our model could be invoked to simplify the
assignment process and make it more credible. This could be achieved by .
taking the total demand and dividing it by the transport bottleneck (or -
transpert corridor) capacity and specifying as the ‘design criterion the
temporal duration of the peak. Some subjective assessment of what constitutes
a ‘'reasonable' or ‘appropriate' peak period in a given context would be
necessary. This suggestion is similar to the normal practice of the
structural engineer who divides the total load by the working stress of the
structure and executes the design by providing an appropriate cross~section of
material. fThis analogy is highly relevant to the traffic asgignment phase of
the planning process in much the same way as understanding the mechanisms of
peak spread lessens the fear expressed by some people that traffic management
techaiques will inevitably fail to relieve urban traffic congestion.

A final, long-term application of this work is in the area of optimal
control strategies. There are enormous bossibilities of remote control of all .
kinds of activities = including information on the best starting times for a .
commuter - through the application of electronic devices, but to do this
sensibly would involve a better understanding of the behavioural base of the
temporal distribution of traffic. The model described in this paper suggests

relevant criteria for use in any optimisation program that might make any
control strategy less a flight of fantasy.
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