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ABSTRALCT:

This paper considers the modelling of urben and
transport systems and the methodology of model
formulation. The use of reasoming by analogy is discussed,
with an emphasis on the underlying mothematical eoncepls
and principles, and the derivation of an individual

chotce model iz given. The paper discusses the inter-
pretation of land-use/trancport systems models in terms

of information theory and the theory of gomes, shedding
light on the relevance of mathematical programming models
to real world situations. The mathematical concepts also
allow the model user to gain valuable insights into
meaning, structure and sclutions of particular models.

A new urban planning model i used as an exmample.
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INTRODUCTION

The concepts behind the mathematical constructions in
model building are often neglected in later interpretations
of a particular model, and sometimes the worth and applica-
bility of a model may be lost or disguised as a result. In
urban and transport systems modelling the apparent dichotomy
between macro-level and micro-level models might be lessened
through a review of the mathematical foundations of some
models. The understanding of particular models in practice
might also be enhanced by stripping away the layers of equa-
tions to show the conceptual cores which lie beneath. This
paper discusses the interpretation of an urban and transport
planning medel (OPUS, Optimal Planning of Urban Systems) in
terms of information theory and the theory of games. It also
describes the derivation of a behavioural choice model using
a mathematical argument analogous to that used in quantum
mechanics.

The paper thus allows for discussions of a number of
important guestions, such as possible relationships between
macro-level (aggregate) and models of individual behaviour,
and some insights on the relevance of mathematical programming
planning models to real world situations. The theoretical
concepts introduced may also permit the model user to better
understand the meaning, structure and solutions ot particular
models without the need for the complexities ot mathematical
manipulations.

ANALOGIES IN MODELLING

The use of analogy in developing models of transport
systems has had a chequered history. In the 19505 and 1960s
many models were derived by analogies with the physical
sciences (e.g. the gravity models of Voorhees (1955) and
Wilson (1967), and the Boltzmann-like theory of traffic flow
{(Prigogine 1959)). In recent times modelling based on physical
analogy has fallen into disfavour as theories based on indi-
vidual behaviour have been developed (e.g. see Richardson
and Young (1980) for discussion on the point). Human behaviour
at the level of the individual would not seem to relate
strongly to the behaviour of mclecules in a gas. Further
reflection on the matter of analogy can however lead to some
useful principles. A model of & physiczl system may be seen
as an application of a particular mathematical formulation.

A set of concepts and assumptions yield mathematical equations
which are then solved. The analogy does not come from the
physical system itself, rather it stems from the mathematics.
The particular systems analyzed are thus parallel examples
of the application of a mathematical theory., In many cases
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the application to the physical system may have considerably
predated the application to the human system. The gquestion
is thus not whether the two systems are analogous but rather
if the assumptions underlying the mathematics are viable for
each system, given constraints in terms of the available
data, the results to be found, and the intended purposes ot

the results.

Conseguently, the observation that a particular model
structure first arose in another scientific field cannot be
i used as an argument for that model's acceptance or rejection.
i The only advantage of reasoning by analogy is that it may per-
mit the analysis of certain phencmena in a consistent fashion
according to a previously investigated logical system. Logical
connections need not be assumed between sciences, rather full
use can be made of any logical parallels existing between
descriptive systems {(Griesinger 1974). This idea 1is nct new.
James Maxwell {1890) argued that:
'By physical analogy, I mean that partial resemblance
between the laws of a science and the laws of another
science which makes one of the two scilences serve

to illustrate the other.'

Two examples of modelling by physical analogy follow.
The first describes the gravity model for trip distrikution,
and how its derivation has evolved from reasoning by direct
physical analogy to the use of information theory. The second
example outlines the generation of an individual choice model
using the Schroedinger equation from quantum mechanics. This
analogy produces a model similar to the multinomial logit
model. Some of the underlying assumptions of the schroedinger—
derived model are then discussed.

The Gravity Model

The study ot human spatial interactions using ‘gravity
models' has a considerable history. Carey (1858) suggested a
"great law of molecular gravitation', with the individual as
the molecule of society, by direct analogy with physical
gravitation, Subsequently Ravenstein (1885) offered empirical
evidence to support such a model. The Boston Transportation
Study of 1927 used an inverse-square-distance model to estimate
trip interchanges between traffic zones (Heightchew 1979).
This work was fForgotten in the aftermath of the Great Depres-
sion and World War II, and the gravity model analogy for
trip distribution was reformulated in the 1950s (Voorhees
1955). Subsequently Wilson (1967) derived the modern form
of the gravity model using the concepts of statistical mech-
anics. It is now known that this derivation is in fact an
application of the mathematical theory of intormation (ROY and
Lesse 1981). Information theory offers a general mathematical
framework for finding best estimates (most probable values)
of specified model variables {or parameters) given the level
of available data. It also indicates a system for refinement
of estimated values as more data (information) are made
available (e.g. Snickars and Weibull 1977). The approach thus
offers a method of finding model outputs with a minimum of
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information and a means for improving these estimates as
further information becomes available, It is the mathematics
which produces the model rather than the analogy with the
behaviour of particles in a physical system.

In information theory, entropy becomes the degree ot
uncertainty, related to the quantity of missing intormation.
Recently Roy and Lesse (1981) described alternative microstate
definitions which relate the possible orderings of individuals
(e.g. trips, or households) into groups (e.g. zZones)} accor-
ding to various constraints on group size (e.g. zone capacity)
or variations between individuals. The particular definitions
were shown to correspond to alternative detinitions of entropy
in physics, and to be simply described in terms of locational
parameters in a transport systems context. The mathematical
treatment of these concepts may be found in Snickars and
Weibull (1977} and Roy and Lesse (1981), and the tollowing
results are known.

The common form of the (doubly-constrained) gravity

model is

Tij = Ay Oj Bj D4 exp (8 ciy) (L)
where

Aj = 1/} Dj By exp (8 ci) ¥ i

and ’

By = l/g Oi Aj exp {8 cii) ¥ j

given that Ti4 is the number of trips between origin 1 and
destination j7 Cij is the travel cost, ©j is the trip produc-
tion and Dy 1z thé trip attraction. Intormation theory
permits the derivation of this model, given that the degree
of uncertainty (entropy) of the system may be written as

y Tij (log Tj4 - 1) (Katz 1967). The derivation tollows trom
1]

sclution of the mathematical programming problem

max § = - ) T;iy (log Tig - 1) (2)
ij
subject to
(a) a known total number of trips (T) T = } T4 (3}
ij
{b} origin-balance constraints 0 = } Tiy ¥ i (4)
]

(c) destination-balance constraints Dy = ] Tij ¥ ] {5)
i
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(d) mean cost of travel (&) TC = ]} Ti: €44 (6)

Other common types of gravity model may be tound by
removing some of the constraints above. Singly-constrained
models result from removing constraints (b} or (c} respectively.
An unconstrained model yielding a trip distribution with the
reguired mean travel cost results from the complete removal
of constraints (b) or (c). Further models may be generated by
adding extra constraints. For example it the variance {s2)
of the travel cost distribution is known then additicen of
the constraint

}Tyy cfy = 2(s? 4 3% (7)
1]

would yield a model which balanced trip attractions and prod-
uctions, and fitted the mean and variance of the travel cost
distribution. Further constraints e.g. on subsets ot origins
and destinations or knowledge of higher moments of the cost
distribution might also be used. These extra constraints
represent increased levels of knowledge of the system under
study. Eriksson (1980) has produced an efficient general
computer program for solving maximum entropy problems of this

type.

Field Theory and an Individual Choice Model

Field theory is a weil-established branch ot mathe-
matical physics. Griesinger (1978} argued for a tield theory
in psychology based on the assumption that a psychological
force {composed of values and perceptions at a decision time}
could determine behavioural propensities. He sought both a
relationship between the definition ot utility and a choice
rule, suggesting that the two concepts were interdependent,
and a relationship between the functional form of the tield
and its sources.

Force is a vector, whereas utility in behavioural
theory is a scalar. However, force is proportional to the
gradient vU of potential energy (U). Griesinger suggested
that the definition of a generalized utility field might
thus find inspiration from the study of the potential field
in physics, Field souces in behavioural terms would be
sources of expected satisfaction {(Lewin 1938). The choice
situation also requires possible extension to an abstract
n-dimensional space {e.g. utility in terms of the value

-attributes of a commodity, as defined by Lancaster (1966)

amongst others). A value of utility can then be defined for
each point in the abstract space, and sources ¢f utility may
stem from actual experiences or judgements concerning some
of the alternatives. Griesinger (1978) defined psychological
force as the gradient of the scalar utility field, i.e.

F=vwy (8)
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An analogy with Newtonian physies did not yield a
choice rule for decision theory {Griesinger 1978), whereas
the Schroedinger equation from quantum mechanics could. The
Schroedinger equation relates the potential energy field to
the probability P(r,t) of observing a particle in a volume
element §v at a location r at time t, in terms of a proba-
bility amplitude ¥({r,t) and its complex conjugate ¥*{r,t),
and is given by

Plr,t) = ¥*(r,t) ¥ {r,t) (9)

Consider the time-independent form ot the Schroedinger
equation which is (Irving and Mullineux (1959}

V2%+ m(U - A) ¥= 0 (10}

where ) and m are constants, and the pProbability density
function {(preference function) pl{r) is

plr) = ¥* (r) v¥(r) (11)

Equation (10) is a Sturm-Liouville equation whose
solutions are known, and depend on the eigenvalue A which
in turn depends on the form of U and the boundary conditions
{(e.g. Irving and Mullineux 1959), These results are detined
for a continuous space, while a choice situation is typically
limited to a finite number of alternatives. & distinction is
needed between the preference function and the cheice proba-~
bility (Pg, for alternative k) which is detined on a reduced
Space consisting solely of the perceived available alternatives
(Luce 1959). In the present terminology, Luce's axiom gives
the probability of choosing an alternative lying in a volume
év about the point r4, given n alternatives lying in equal
volume. elements §v about the points ri, i1 =1, ++4, n as

n
B o{rg | ri, i=l,u.., n} = p(rg}/ § plri) (12)
i=1

. As an illustration of this reasoning, consider a

point source at r=0 in an n-dimensional orthogonal Euclidean
space with U=a/r where a is a constant and v is the radial
distance. Then, using the definition

- a? (n-1) &

2. = tor a radially-symmetric function in
VE 5zt Ty 7 y=sy

this space, eguation (10) may be written as

32y {n-1) av

m,2
Brz + r ar + (1’.' - A) ¥ =0 (13)

which is a well-known equation whose solution for Ao, (the
first eigenvalue, or groundstate} is

Ao = a%m/(n-1)2 (14)
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¥, = L exp(-amr/{n-1))
so that, substituting in equation (11}

p = L2 exp(-2amr/(n-1)) (15)

where L is a constant. From equation {12} it follows that

pP{ry) = exp(-am ry)/ ] exp(-am rj) {16}
i

which is a similar form to the multinomial logit choice
model.

The selection of alternative definitions of the
utility function would result in alternative forms of the
choice model. Griesinger (1978) used this method to model a
number of well-known psychological phenomena. A critical
review of this procedure is required, however. In the first
instance the definition of the attribute space needs to be
carefully considered. The assumption of orthogonality is impor-
tant, representing an attribute-set free of multi-collinearity.
whe choice of a Euclidean space may also restrict the selec-
tion and application of a utility function. More importantly,
the derivation of egquation {10) involves an assumption that
the behaviour of the individual is perieodic in time, and is
confined within certailn fixed bounds. Such a situation might
well exist for some choice gituations (e.g. the journey to
work) but the wvalidity of a model such as that given in
equation (16) needs to be carefully examined in any intended
application. Despite these criticisms Griesinger's method-
ology offers an area of considerable interest tor future

research.

This section discussed the general use of analogy in systems
modelling, and indicated that the use of a particular model
structure in one scientific field should not be used per se

as an argument for acceptance or rejection of that structure in
another field. Rather the consideration of the usefulness of

a model needs to be based flrstly on the applicability and
restrictions of the assumptions behind the model, and sub-
sequently on the data reguirements and desired level of model

output.

In the next secticn an alternative methodology for the
interpretation of models is addressed. As an example, a new
general urban systems model is examined, using the theory- of
games, to relate and compare alternative model structures.

2 NEW URBAN SYSTEMS MODEL

Recent work at CSIRO Division of Building Research
has centred on the development of a new combined land-use/
transport planning model (OPUS), which includes transport
costs, and the costs of land-use development and the demoli-
tion of existing land-use activities (i.e. urban growth,
redevelopment and/or decline). The OPUS model may be seen
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as a multiple objective comparative planning model, and
includes the earlier TOPAZ model (Sharpe and Brotchie 1972,
Sharpe and Karlgvist 1980, Brotchie, bDickey and Sharpe 1980)
as one component, Gther components, involving alternative ob-
jective functions, are planned, and the first of these to be
implemented is a model generating a (co-operative or optimum)
lower bound solution for the combined land-use/transport
problem which permits trade—offs between efficient transport
costs (e.g. energy) and land-use cost alternatives to be
evaluated. The model formulation is given in the Appendix to
this paper. It will be seen later that TOPAZ may be interpreted
as a competitive or 'Nash' gaming model whereas the co-
operative model is a 'Pareto' gaming model,

The main peint of interest here is the ihterpretation
of the OPUS model and comparisons between its component sub-—
models. The mathematical theory of games offers a useful
method of interpretation, which may have application to a
wide range of mathematical programming models. A brief outline
of this theory follows.

Theory of Games

The clearest interpretation of the theory of games
may be seen for the case of two players, each of whom tries
to optimize his own objective function (U1 for player 1, Uy
for player 2) in terms of two control variables (x1 and
X3). The results may easily be extended to n players and m
control variables (e.g. see Von Neumann and Morgenstern
1953). In the case of two players and two control variables,
a useful geometric interpretation of the problem may be used
as in Figure 1. Player 1 tries to select his control variable
X] to minimize his pay-off U while player 2 tries to select
his control wvariable X to minimize his pay-off Us. 01 and
Oy in Figure 1 represent the global minima for U3 and U res-—
pectively, and the contours represent the form of the two
functions Uy and Us. The dashed lines passing through 0] and
0y represent the loci of rational (optimizing} choices for
Players 1 and 2 for fixed values of X9 and x] respectively.
The point(s) of intersection (if any) of these 2 loeci repre-—
sent solutions of the joint optimization probiem in a competi-
Live game. Point N on Figure 1 is such a point, and is called
the 'Nash equilibrium'. If more than one such point exists,
the player who has first move has the opportunity to select the
Nash equilibrium point most favourable to him. At N= {xl,xz),
the feollowing relations hold

x * *
U, (x X.) < U (x Xq)
1 1r =2 1 o2
and L (17)

x x L3
Uy (xl, Xy} < Uy (xy, x2)

In this situation no player can deviate unilateraily
from N without worsening his own pay-ott.

The shaded region S of Figure 1 represents an area in
which both players can simultaneously improve their pay-off
from the Nash equilibrium. However to achieve any such im-
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provement, both players must agree to co-operate in the
choices of their respective control variables. The concept
of Pareto-optimal (non—inferior) solutions may be introduced
to eliminate many of the solutions from region S in the
search for the best solution in a co-operative game. The
line O]APBQOs representing the loci of tangent points between
the contours of Uy and Uz can be shown to have the property
that every point on the iine is not dominated by any other
point Q in its neighbourheod (Rao and Hati 1980), i.e.

Uy (p) < U1 (Q)

and (18)
Up (P} < Uz (Q)
where P is a point on CjAPBO3 and 0 is any other point in
S, The set of all points P on the line segment APB is the
Pareto-optimal set, termed Sp. The set Sp may be determined
from the following minimization set
2(x, a) = a1 Uy (%1, x2) + a2 Uz (X1, %x3)
(19)
Y (@) = minyg [%(x, o))
where a1 + ap = 1; o1 » 0, X=(X1, x9)
and a = {a;s o). IEf for a given a, X minimizes % {(X,a)
then a typlcal element of Sp may be written as
g% = {u; (x0, ), vy x§, =D}
as Sp is the set
8, = {U(xo) | %0 minimizes Z(x, a)} {20)

p
which may be determined by solving a series ot scalar mini-
mization problems with xj; and xp ‘co-ordinated by an umpirve’
(Rac and Hati 1980). The selection of the Pareto optimum
then becomes a matter of finding the value of o maximizing Z
in eguation (19). The Pareto optimum ¥(« = 0.5} is the
most democratic one if no favour -is to be shown to either

player.

CPUS Submodels

The OPUS planning model may be seen as a comparative
model which permits the analysis of land-use transport plans
under a number of different criteria which can be related
through gaming theory. The TOPAZ submodel (Brotchie, Dickey
and Sharpe 1980) may be seen as & competitive game involving
two players with one player sub-optimizing the land-use
problem while the other sub-optimizes the transport distri-
bution problem. The first player may be visualized as the
planning authority, while the latter may be seen as the
travelling public acting as a group. In this competitive
game each player sequentially makes optimizing decisions
according to the last move of the other player, and a Nash
eguilibrium solution emerges (Roy and Lesse 1981, personal
communication). No direct co-operation between players oQccurs,
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and hence the final soluticn is not expected to be as good
as one in which the players make simultaneous decisions.

If the players co-operate to jointly optimize land
use and trip distribution then the solution is the Pareto
optimum described earlier. Sharpe (1981, unpublished notes)
solved this problem using Benders' decomposition technigue,
which allows the transport sub-problem to signal te the land-
use master problem the effect of land-use changes on total
transport costs, through the use of marginal cost {dual}
variables. The master problem is then constrained to move
towards the Pareto optimum by the generation of additional
constraints {(termed Benders cuts). The description of the
mathematical programming problem representing the co-operative
game is shown in the Appendix.

The Pareto optimum solution represents a lower bound
sclution for the land-use transport problem, and together
with the Nash equilibrium solution can provide planners with
more balanced information about the merit of alternative
plans (Roy, Sharpe and Batten 1981). In line with a central
theme of this paper it should be noted that linear programming
(LP) techniques are used extensively in the solutions of the
OPUS submodels. The submodels are not simply LP models, res-
tricted to strict cost minimization and the treatment of land-
use and trip distribution variables as simple homogeneous quan-
tities, impervious to diversity of behaviour and perception.
Rather the LP technigue is used solely for the solution of
parts of more complex problems which do permit variations in
individual behaviour and allow for differing objectives to
be held by competing groups.

CONCLUSIONS

The paper discussed the interpretation of a set of
urban and transport planning system models in terms of the
mathematical concepts underlying the models, with particular
emphasis on the theory of games and information theory. The
applicability of particular model forms was discussed in
terms of their assumptions and resulting mathematical struc-
tures, with an indication that the use of similar model
structures in other fields of science did not necessarily
add to or decrease the relevance of a given model. An under-
standing of the underlying mathematical concepts behind a
model can lead to an improved appreciation of the value and
relevance of a model in particular circumstances.

In the final assessment, the real test of any model
is the extent to which it can use known data and provide
adequate and competent estimates on the basis of that data.
Model testing and evaluation remains an important area for
future study and research. Ultimately it is a model's rela-
tionship to data which will determine its significance.
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APPENDIX: AN OPTIMUM ECONOMIC/ENERGY LAND-USE TRANSPORTATION
MODEL

This appendix develops a model to minimize the total
combined energy {or cost) of transport, land-use development
and demolition of existing activity, and which yields a
Lower—-bound {Pareto) optimum solution, as a submodel within
the OPUS urban planning model system outlined in the body of
this paper. The objective is to determine a land-use and
trip distribution pattern to:
{a} maximize the total benefits less costs of interaction plus,
(b) the total benefits less costs of establishing and operating
land-use activities plus
{c) the total benefits less costs of demelishing or removing
any development from an earlier pericd. Benefits and costs may
be in either economic or energy units. The allocation is made
subject to constraints requiring each activity to be fully
allocated and that each zone is not overfilled. Additional
planning and transport systems constraints may also be

included.

Assume the Following notation:

A4 = planned level of activity i including existing
development.

biq = unit cost less benefit of incrementing the level of
activity i in zone J.

Cjjk. = cost less benefit per unit of interaction between
activity i in zone J and activity k in zone 1.

diy = unit cost less benefit of decrementing the level of
activity i in zone J.

€54 = initial level of activity i existing in zone j.

Sik = trip generation rate between a unit of activity i and

a unit of activity k.

Sik Ai/Rke

= number of trips between activity i in zone j and

Tig
Jka : X
activity k in zone 1.
Xij - amount of activity i allocated to zone Jo
¥ii - amount of activity i removed from zone J

= capacity of zone j, including existing development.
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On the basis of a gravity medel trip distribution
with exponential deterrence function parameters {g;iy} for
trips between activities i and k, the overall problem may be
written as

Z= Ming,x,y[lijk: (Tijk: Cijk: * Tijk. (log Tijx. - 1)/Bik)

(21)
+ 1ij (bij xij + dij yij)!

subject to (i} interaction origin-destination constraints,

I [Tijk, = sik {Xxi§ - ¥ij + ei3}]1 =0 ¥ i,j,k (22}

23 [Tijkr = ¥ik (%ky = Yki + el =0 ¥ i,k (23)
(ii} full allocation of each activity,

by (%35 - yi3) = Ay - jjeqy ¥ i (24)
(iii) no zone overfilled,

1 {xi§ - vig) € %23 - lieij ¥ 3 (25)
(iv) and constraint bounds

0 < (%ij)min € %ij € (Xijlmax ¥ 1,3 (26}

0 < (¥i5)min < ¥ij < (Yijlmax < ©ij ¥i,3 | {27)

0 < (Tijjk)min € Tijka € (Tijki)max ¥i,9,k (28}

REFERENCES

Brotchie, J.¥., Dickey, J.W. and Sharpe, R. {(1980). TQPAZ -
General Planning Technique and its Applicatidons at the Regional,
Urban and Facility Planning Levels. (Springer Verlag: New

York}. .

Carey, H.C. (1858). Principles of Social Science. (Lippincott:
Philadelphia). :

Eriksson, J. (1980). 'On solving linearly constrained maximum
entropy problems', Technical Report LiTH-MAT-R-1980-14,
Linkoping Institute of Technology.

Griesinger, D.W. {(1974). 'The physics of behavioural systems',
Behavioural Science Vol.19, No.l, pp 35-51.

Griesinger, D.W. (1978). 'The physics of motivation and
choice', IEEE Transactions on Systems, Man and Cybernetics,
Vol.SMC=-8, No.l2, pp 902-907.

Heightchew, R.E. (1979). "TSM: revolution or repetition',
ITE Journal vol. 48, No. 9, pp 22-30.




TAYLOR and SHARPE

Irving, J. and Mullineux, N. (1959). Mathematics in Physics
and Engineering . (Academic Press: New York and London}.

Katz, &. (1967). Principles ot gtatistical Mechanics - The
.Intormation Theory Approach. {(W.E. Freeman and Co. 3 San
Francisco and Londomn} .

Lancaster, K.J. (196B). 'A new approach to consumer theory’' .,
Journal of Political Economy vol.74, pp 132-157.

Lesse, P.F. (1981). 'A phenomenological theory of socio-—
economic systems with spatial interactions®, Environment and

planning A {in press).

Lewin, H. (1938}. 'The conceptual representation and measurement
ot psychological torces', Contriputions to psychological

Theory vol.l, Noc.4.

Luce, R.D. (1959). Individual Choice Behavior. {Wiley: New
York).

Maxwell, J.C. (1890). The Scientific Papers of James Clerk
Maxwell, Vol.I; Niven, W.D. (ed.) {Cambridge University Press:
Cambridge), p 156. Reprinted by (Dover: New York) {1952).

Prigogine, I. {1959). ‘Boltzmann-like theory oif traffic flow',
Proc. First Int. Symp. on Theory of Traffic Fiow, Detroit.

Rao, S.8. and Hati, S5.XK. (1980)., 'Optimum design of shock and
vibration isolation systems using game theory'. Engineering

Ogtimization, vol.4, pp 215-226.

Ravenstein, E.G. (1885). 'The laws of migratien', J. Royal
statistical Society Vol. 48, PP 167-235.

Richardson, A.J. and ¥ound, W. (1980). 'Macroscopic lecation
models revisited', Transportation Research vol.14B, pp 261~

269.

Roy, J.R. and Lesse, p.F. (1981). 'On appropriate microstate
descriptions in entropy modelling', Transportation Reseatrch

vol.15B, pp 85-96.

Roy, J.R., Sharpe, R. and Batten, D.F. (1981). 'Model
structures f[or some alternative planning trameworks'. Proc.
seventh Pacific Regional Science conference, Surfers Paradise.

Sharpe, R. and Brotchie, J.F. {1972). 'aAn urban systems study',
Royal Australian Planning Institute Journal Vol.ld, Pp 105-118.

Sharpe, R. and Rarlgvist, A. (1980) 'powards a unitying theory
tor modelling urban systems', Regional science. and Urban
Economics vVol.l0, pp 241-257.

gnickars, F. and Weibull, J.W. {(1977). 'A minimum information
principle: theory and practice’', Regional Science and Urban

Economics Vol.7, PP 137-168.




UNDERSTANDING THE MODELLING PROCESS

von Neumann, J. and Morgenstern, O. {(1953). Theory of Games
and Econcmic Behaviour {Princeton University Press: Princeton).

Voorhees, A.M. (1955). ‘A general theory of traffic movement',
Traffic Engineering Vol.26, pp 46-56.

Wilson, R.G. (1967). 'A statistical theory of spatial distribution
models', Transportation Research Vol.l, pp 253-269.




P= PARETO OPTIMUM
N=NASH EQUILIBRIUM POINT

X2 | \.\ *REGION S*
\

!//ﬁ

Q
N

INCREASING
CONTOURS
OF Uy

.

CONTROL VARIABLE FOR PLAYER 2

: INCREASING
CONTOURS OF Uy

X
1
CONTROL VARIABLE FOR PLAYER1



