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Abstract:

A well known second best pricing rule for o decreasing cost
public enterprise subject to a budgel comstraint (e.g. being
requirved to break even) is that the revenue requirved over
and above marginal cost should be obtained by allocating

the additional charges in inverse proportion to demand
elasticities. This rule, which {e essentially traditional
value~of-service discriminatory pricing, breaks down when
there ave significant cross-elasticities. Thus, in some
important transport cases a better rule is needed. This
paper shows how the appropriate second best pricing rule
can be applied to specific transport situations and
demonstrates. that the resulting prices can differ
substantially from the simple elasticity rule. The extreme
case of closely competing modes such as ratl and rood
general freight are given particular attention, and i+t is
shown that improved cost data together with better estimates
of demand elosticities make rational public enterprise
pricing a feasible policy.
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SECOND-BEST PRICING FOR COMPETING MODES OF TRANSPORT

As we all know from the success of aviation de-regulation in the
United States, cases of natural monopoly in transport are fewer than was
once thought. Government intervention in naturally competitive industries
15 not only unhecessary but will do & great deal of harm. Of course,
getting rid of i1t may be painful for operators, as some American airlines
are finding.

Nevertheless, railways and the provision of roads (not road
operations) do appear to be natural monopolies and consequently need
careful regulation. To these can be added airports and seaports. All
exhibit increasing returns, so that marginal costs are less than average
costs and marginal cost pricing, the optimal policy, would send the
railways, for example, even more broke than they ave.  Consequently, the
operators must resort to some form of second-best pricing in order to
break even or to keep the Toss within bounds.

In the past, railways have dome this fairly well: value-of-service
pricing or charging what the traffic will bear is a reasonable approximation
to the correct second-best rule when there s no serious competition from
another mode also exhibiting increasing returns. The rule is(1

where p is the freight rate
MC 1s Tong-run marginal cost
E is the price {freight rate) elasticity of demand for the service
and g8 is a constant across all railway bus1ness which is set to achieve
the required revernue,

At one extreme, g8 = 0, we would have marginal cost pricing. At the other
extreme, g = -1, we would have profit maximising monopoly behaviour,
charging to get as much as possible out of the traffic. One way of looking
at an intermediate value of 8, necessary to achieve break-even or some
other goal, is- that it is a scalar used to increase all the demand
e]astic1t1es, so that the operators can then apply the simple prof1t
maximising® rule with the scaled elasticities.

This rule breaks down when the various demands are not independent,
i.e. there are appreciable cross-elasticities. Nevertheless, the second-best
vule which does take into account cross-elasticities still results in
discriminatory pricing not unlike traditional value-of-service pricing.

In reality, there are not many cases where the demands for two
services performed by a railway are non-independent. 1t is hard to think of
such pairs - fast and slow services for a particular class of goods on a
particular route would be one. The important cases arise when twc decreasing
cost industries compete. This includes those cases where increasing oy
constant cost industriés use facilities provided by decreasing cost industries:
trucks {and buses) using voads, aeroplanes using airports and navigation
aids, ships using seaports and navigation aids. Perhaps the crucial point

1 The rule has been similarly stated by Baumol and Bradford (1970) except
that g is expressed as -{1 + x)/x and also by Rees (1976, p.106) except
that 8 is expressed as -a/(1 - A}
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in a1l this was made by Boiteux {1956, 1971) when he showed that the
optimizing {i.e second-best) procedure should be applied across all
these enterprises simultaneously. In the French context, he spoke of
using the one rule for all 'nationalized firms'.

Although the great merit of Boiteux's work is its generality,
his result still has a lot to offer when we narrow it for application
to two competing modes and ignore the refinements with respect to factor
prices. Adapting from Dreze's (1964) summary of Boiteux, one has the
following conditions for achieving the second-best :

Xy L
where (3—1) is the partial derivative with respect to the price on
Pj the jth mode of the income-compensated demand function

for transport by the ith mode

Thus, for the first of the two modes {i.e. j =1) :

BXy
(Pl - MCI)(——) + (92 - MCZ)

3Ky 4
5 (5 =
1

3pg BX

But (axp/8pp)* can be replaced by (axllapz)* because they are identically
equal. When the equation is also divided through by x7 and the terms on
the Teft are multiplied appropriately top and bottom by py and pp, an
expression in compensated elasticities is obtained, and similarly for the
second mode :

p, - MC p, - MC
1 1 E; + 2 2 £ - g
Py 1 Po 12
p, - MC p, - MC
1 1 oy 12 2 E* -
Py 21 P> 22

This derivation has followed Train (1977)¢1)

In matrix form :

p; - MC
£ £X a3 8
11 12 Py
- MC B
E* E* P2 H 2 B
21 22 P2

1 In his examination of second-best pricing for BART and A.C. buses in the
San Francisco area, Train (1977} used average total cost to arrive at the
constrained optimum. This does not appear to be as sound as setting g to
achieve a fixed sum in excess of marginal costs.
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SECOND-BEST PRICING FOR COMPETING MODES OF TRANSPORT

For virtually all transport situations, the difference between
income-compensated elasticities and ordinary elasticities is negligible,
so that ordinary elasticity estimates can be used.. However, for the usual
reasons, mode-split elasticities cannot be used (1)

To see that the pricing rule can give an appreciably different
result from the simple one shown earlier, consider the fo110w1ng hypothetical
system, where marginal cost is the same in each case (MCl = MCy = = §$10) :

i pl - 10‘ r
-1 0.5 8

0.8 -1 — g
11 P2

Because the own-price elasticities are equail (E ~1) and the
marginal costs are equal, the simple rule wou]d 1mp]y %hat the two prices
should also be equal. This is not correct. Suppose that g = -0.2, then
the correct prices are obtained by solving the system, to give :

Py = $20

In arriving at these results, the following expressions were obtained :

Py - MG, 2.5 Py - MGy

Py P2

= -3.08

These look very similar to the simple optimising rule, and can be changed
into exactly the same form :

P - MC1 i 2 Py - MC2

. B
Py 0.4 b, ~ 0.333

It may be useful to regard the veciprocal values, -0.4 and -0.333, as
‘pseudo own-price elasticities' which, after scaling by the system-wide g,
could be used by operators to set the particular fares or freight rates.

Second-Best Pricing for a Mixture of Independent and Non-Independent Demands

The more usual situation is that the enterprise meets some transport
demands which are non-independent, having significant cross-elasticities of
demand, and some which are independent. In this situation the second-best
pricing procedure is to use a mixture of the two pricing rules. We take

1  See Taplin (1980)
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the previous example but add a third class of trips having no significant
cross-elasticities with the other two classes. Again it is illuminating,if
somewhat artificial, to assume the same long-vrun marginal cost (MCy; = MCo =
MC1 = $10) and the same own-price elasticity (E3z = Epp = Ey1 = -1?”

Thus, the second-best conditions are :

i T T py - 10 } [ ]
-1 0.5 0 NESN g
P1
Py = 10
0.8 -1 0 e = 8
Py
p, - 10
0 0 -1 3 8
P3

If we again set g = -0.2 in order to satisfy the budget constraint (say
break-even) then the solutions for p; ard po are the same as before (p; = $20,
pz = $25) while pg is,in effect, found by tEe simple elasticity rule :

Py - 10

_ _ =0.2
I'J3 -1

= £ . e
-1

py = $12.50

Even more than before, this extended example shows how much the existence
of some appreciable cross-elasticities cause prices under constrained
optimum {second-best) conditions to depart from the uniform prices that
would be fmplied by the simple rule alone in a case of uniform marginal
costs and own-price elasticities.

If the number of daily travellers at these prices were 1000 in
group 1, 500 in group 2 and 1,200 in group 3 then daily costs and revenue,
assuming that the enterprise breaks even, would be :

long-run marginal costs (MC) 27,000
other costs 20,500
total costs (= total revenue) 47,500

In reality the problem would start with the questicn how to cover the $20,500
of other costs in an optimai fashion. The actual exercise would be to find
a g that would do it, and the solution would be g = -0.2

Competition for Freight : the Road-Rail Case

The foregoing discussion has deliberately been in terms of passenger
transport because the points being made are likely to be most relevant in
that context. For many classes of travel {not urban commuting) the fncome
elasticity is substantial and the (positive) cross-elasticities with respect
to the prices of other consumer goods can also be appreciable. It therefore
follows from the homogeneity condition (the elasticities sum to zero) that
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the difference between the absolute values of the own-price elasticity
and the cross-elasticity with respect to the fare on a competing service
can be fairiy large. To put it another way, such differences represent
the price responsiveness of the general class of travel, which may be
fairly high.

In contrast, the price responsiveness of the demand for freight
transport is Tow. Consequently, in the case of competing modes, the
absolute values of the own-price elasticity and the cross-elasticity with
respect to the rate on the competing mode will differ very Tittle.
Fitzpatrick and Taplin (1972) made a rough estimate that demand for general
freight transport between Australian cities is less elastic than -0.1, and
there seems to have been no disagreement with this general order of magnitude.
It follows that where road and rail compete for general freight the difference
between the absclute values of the own-price elasticity and the cross-elasticit
in each demand function will be in the vicinity of 0.1 or Tess.

A report by the BTE (1979) provides data which makes it possible to
indicate how second-best pricing could be used operationally for competing
road and rail. They estimated a (Tong-run) own-price elasticity for road
between Melbourne and Sydney of -0.7. One cah infer from this a cross-
elasticity of approximately 0.6, assuming an absolute difference of 0.1 Now
the cross-elasticity of demand for rail transport with respect to road rates
can be derived by symmetry. This is done on the basis of the estimated
1975-76 non-bulk freight guantities given by the BTE (1978)(1):

Road Rail

Sydney to Melbourne non-bulk (‘000 tonnes) 2120 322
Melbourne to Sydney " ) 1870 471
Totatl 3990 793

Because road is estimated to carry five times as much as rail the cross-
elasticity in the vail demand equation is five times the cross-elasticity
in the road demand eguation.

Finally the own-price elasticity in the rail equation is inferred
from the cross-elasticity. An arbitrary difference of 0.05 is5 assumed. The
resulting system s :

P - MC1
0.7 0.6 P 8

3.0 -3.05 —_—— B

1 This is an example of the importance of having reasonable estimates of
how much freight is moving where and by what modes. The significance for
ratfonal policy development of the estimates made by Dr H. Quinlan of BTE
cannot be over-emphasised.
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7&« ‘The solutions are :

py - Moy . Py 1

2= = -10.89 p 1.8, —== = e

P1 MC T+ 10.8% 3
1

pz - MC_Z_ . pz 1

-11 045 8 i.e. T, T TYI1.045 ¢

The significance of this result is that to achieve the optimum {i.e. second-
best) the ratios of the freight rates to the marginal costs must be
approximately the same.

When both elasticity differences ave the same then this constancy
of p/MC result can be shown to be an exact one. This 1s an interesting
special case because it holds even for large {equal) elasticity differences,
put would be of Timited value in applications because there is no reason to
believe that equal elasticity differences is a common phenomenon. Thus the
approximate result for small but unequal differences is the more useful

The view that for second-best pricing of competing modes the p/MC
ratios should be equal has been held by a number of writers, but the grounds
flave been somewhat different. Kolsen (1968, p.36) argued that the ratio
must be the same in the two competing modes because the substitutability at
the margin of voad transport outputs for rail transport outputs is likely
“ito be much greater than the substituiability of either for non-transport
soutputs. However, in the example earlier in this paper the cross-elasticities
between the modes would be much larger than any other cross-elasticities in
~efther equation. Yet second-best pricing resulted in a substantial difference
‘between the p/MC ratios.

o What the result in the latter part of this paper suggests is that
“iifincome elasticities and other cross-elasticities are all very small then
equality of p/MC ratios is the correct second-best rule for competing modes.

The curfous thing about these resuits is that knowledge about
glasticities is more or Tess vedundant for second-best pricing of competing
modes under the conditions just indicated. Road, rail and sea transport

ccompeting for freight can all be appropriately regulated with reference
primarily to marginal costs. Nevertheless, the general problem remains of
-0ptimising across the whole system, ncluding parts which are non-competitive.

o Although the p/MC vule is relatively simple, systematic application of
-1t is still to come. The difficulty has been knowing the specific costs;

= these are now becoming much better known and so one can expect considerable
ddvances in socially acceptable pricing.

Summary

i (1) Charging what the traffic will bear - the simple elasticity rule -

in order to break even or to meet some other budget constraint is appropriate
so long as there are no sighificant cross-elasticities

(2) Wnere there are significant cross-elasticities the more complex
second-best pricing rule should be used.
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(3) In the usual case where some traffics ave competitive'and others
are not then a mixture of the two rules should be used, with a common 3.

(4) In the case of competition for freight, the more complex rule is
sti11 correct but equality of price to marginal cost ratics is a satisfactory
approximation.
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