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Abstract:

Much morey has beewn spent on the collection of comprehensive
household travel (HIS-home interview survey) data in

Australion cities which has in turn been used, and will

continue to be used in the foreseeable future, for the
estimation of travel demand models by tronsport planning
authorities., The proliferation of multinomial logit

{MUL) and other estimation/application packages also means

that individual travel choice modele will continue to be
promivent. In this event it is worth ensuring that maximmm
value is obtained. Improvements to current individual travel
chotce modelling may be achieved in at least three aspects.-
Firet, if the Lancastrian paradigm of consumer behaviour is
strictly followed and only characteristics of the transport
system ave included in the utility function, but the influence
of different individual attributes is allowed for by appropriate
market segmentation. BSecond, if the wnit of analysis adopted is
the jowrmey (i.e. the round trip from home back to home) and not
the trip. Third, if cholce sets are carefully selected, which
in the coge of the MUL model could resuli in a hierarchical
deeciaion process for the journey-to-work modal choiece. The
Ballarat HIS data was used for the exercise and resulied in
following current practices. Furthermore, the Jdifferential
tmpact of each LOS variable on different socio-economic
segments could be detected,
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IMPROVEMENTS TO INDIVIDUAL TRAVEL CHOICE MODELS

INTRODUCTION

Disaggregate, behavioural cr individual choice
modelling of travel behaviour has very much become the
quantitative transport planning tool of recent and near
future years. Whether or not it deserves to replace
aggregate modelling of travel behaviour is not the presexrve
of this paper. One particular form of individual checice
model (ICM} appears to be favoured over cother contenders
for pragmatic rather than theoretical reasons. This model
is commonly known as the multi-nomial logit (MNL) model -
its precise multinomial logit (MNL) mathematical form is
given later in the paper. Further, transport planning
authorities +tend to use existing metropolitan-wide data,
i.e. home interview survey (HIS) data, as extra data
collection is expensive and not necessarily any more useful
for the estimation of MNL models of travel bghaviour.

It is assumed that the reader is reasoconably familiar
with the theory and application of the MNIL model to travel
behaviour. The authors take the view that whilst the
current situation may or may not be an ideal one, given
the current knowledge of travel behaviour and travel behaviocur
modelling, some effort should be made to maximise the
usefulness of MNI, models of travel behaviour using the N
commonly available MNL estimating/application packages o
and existing (i.e. HIS) data sources.

With the above context in mind, the paper is
structured in the following manner. First, the limitations
of the MNL wmodel are discussed briefly. Second, the
shortcomings of current applications as perceived by the
authors are discussed irrespective of whether these
perceived shortcomings stem from the limitations themselves
or from poor practices. Third, but actually in conjunction
with the second stage, methods to overcome these shortcomings
are suggested and finally the results of putting these
methods into practice using the 1970 HIS data from Ballarat
{(Vic.) are presented and reviewed.

THECORETICAL CONSTRAINTS ON THE MNL MODEL

Independence from Lrrelevant Alternatives (IIA) Property

The reader will undoubtedly be aware of the
notorious independence from irrelevant alternatives (IIA)
property. This property or axiom about selection
probabilities simply states that the relative odds of one
alternative being chosen cover a second should be independent
of the presence or absence of other unchosen alternatives
{McFadden 1974). To understand why this is a restriction
it is necessary to define the assumptions that underly
the MNL model.
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DUMBLE AND GOSCENICK

Random utility theory (McFadden 1974, Williams 1977)
postulates that an individual has a utility function that
can be written in the form:

U= V(x) + =(x) | (1)

where U is the utility,
V is constant and represents the average value of
utility placed on that alternative by the
individual,
e is stochastic and reflects the variability in
utility attached to that alternative by the individual
and
¥ is the set of attributes asscciated with that
alternative.

Once V(x) and £(x} for the cbmpeting alternatives have
been 'calculated' by an individual the choice he then makes
is always the one that maximises his utility.

The MNL model can be derived from egn (1) by
assuming that e(X) is independently and identically
distributed (with respect to each alternative) with
the Weibull distributior (McFadden 1974, Daly 1979).

It is this assumption that really causes the trouble as
it basically means that each alternative in the choice
set (as assumed by the modeller}, is assumed to be
equally different. This reguirement leads to the classic
red bus/blue bus conundrum, whereby the introduction of a
new bus line different only by colour (red}, to an existing
two mode competition between blue bus and private car,
each having 50 per cent, would lead to a MNL model
predicting an unrealistic medal split of one third to
each mode. However, as will be shown later in the paper,
this apparent shortcoming can be overcome, ironically
enoucgh, by judicious use of the IIA property itself.

Choice Set Specification or Identification of Relevant
Alternatives

The red bus/blue bus conundrum introduced
immediately above serves to illustrate the problems of
specifying the appropriate choice set. Bias can obviously
creep in if people are included in say a binary model of
modal choice {i.e. private car vs public transport) when
one of those choices is not really available to them (or
more precisely, when they do not consider it to be
available to them). The specification of choice seis is
an area where the need for further research has been well
recognised (see Morris 1979).

The Linear Additive Utility Specification

For the purposes of current estimation packages,
it is necessary to assume that the utility function is
linear (in the parameters, not necessarily in the variables
themselves) so that the contribution made to the overall
utility by each attribute is added to that made by each
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IMPROVEMENTS TO INDIVIDUAL TRAVEL CHOICE MODELS

other attribute (see egqn (2) below). The reasons for this
are dealt with later in the section on consumer behawiour.
The additive view specifically allows trade-offs between
attributes. An individual can be exactly 'compensated’

for a reduction in the level of one attribute by some
increase in the level of another. This compensatory

view of travel choice behaviour is not necessarily the
'correct' one; it is possible to formulate non-compensatory
theories of travel choice behaviour (see Richardson 1979;
Recker and Golob 1979).

Degree of Disaggregation

Equation (1) was certainly formulated at the
individual level. However, it is always estimated using
data collected about many individuals - McFadden (1974)
does not even bother to specify egn(l} at the level of
the individual, preferring to go straight to a group of
individuals so that V([x) represents the group average
utility and the individual variations within that group.
It is very rare that more than one observation {for the
same choice) is awvailable per individual in the data
set. This is simply because travel surveys have always
concentrated on manifest travel behavicur - the modelling
approach has been one of revealed preference. Functional
analysis offers a truly individual approach, but is not
elaborated upon here; one reason being that a new survey,
albeit small, is required each time a new guestion is
to be addressed (see Louviere 1979).

THEORETICAL UNDERPINNINGS OF MNL MODELLING PRACTICE

Predictive Tasks Suitable for MNL Modelling

Any limitations in the current use of MNL models
can only be discussed in the context of what the modeller
is trying to achieve with them. Broadly speaking, the = =
modeller is attempting to predict trawvel behaviour at
some time in the future, be it tomorrow or the year 2001.
The type of feorecasting that the authors think the MNL
model is particularly suited to is that of short term or
policy,analysis. That is, MNL models may be appropriate
to provide guidance on the likely zesult:of say, increasing
public transport fares by 20 per cent, or doubling the
frequency of the train service. More importantly
these days, it is desifable to know the sensitivity of
response to possible changes in the policy variable - in
the above two examples, public transport fares and
frequency respectively. One measure of sensitivity is the
commonly encountered term, elasticity, which may be
readily cbtained from MNL models. As the MNL model can
readily be segmented or stratified into different
population sub-groups, it can easily be used to determine
which sub-groups are the most sensitive to partlcular
policy variables.
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The authors contend that MNL models are extremely
appropriate in the field of transport policy analysis.
This is not to deny that they could be applicable in long
term strategic planning. It is in the former area that their
superiority over aggregate models is most marked when
existing HIS data is all that are available for estimation.
Of course, one other often neglected use of MNL models,
or for that matter any behavicural-type of model, is that
intelligently used, thevy should increase our level of
understanding of the phenomenon that we are attempting
to model.

A Consumer Behaviour Theory of Travel

The Lancastrian-characteristics paradigm of consumer
behaviour is stated in its simplest form, as:
k=) xk
U L, B 2 {2}
where UX is the utility associated with a particular
alternative, k;
}(k2 is the ‘quantity' of each characteristic 2,
associated with the particular alternative, k;
and B, is the 'weighting’™ on each characteristic
(Lancaster 1966).

This paradigm is well accepted (Hensher 1978a) and is
particularly appealling in the field of travel behaviour
as it is easier to isolate and define 'characteristics'
pertinent to travel and travel decisions than to consider
travel itself as a 'good' in its own right. The previous
consumer behaviour paradigm was simply that the utility
associated with a particular consumption bundle was a
function of the quantity consumed of each good in the
bundle (Henderson and Quandt 1971). In the case of
travel this would mean the more travel the better if

‘we defined travel as the good.

Eguation (2) applies at the level of the individual.
So there is no reason why the g's cannot vary from
individual to individaul; since the same level of charact-—
eristic Xj will not necessarily produce the same amount
of satisfaction or utility to each individual. Furthermore,
the 'mapping' from measureable characteristics (e.q.
travel time, travel cost) into the set of characteristics
that individuals assoclate with travel is likely to wvary
according to the individual under scrutiny. This
'mapping’ aspect is not really addressed in the current
practice of MNL modelling, except indirectly by considering
different functional formg. Again the technique of
functional analysis attempts to explore this area more
fully (Louviere 1979).

There are some practical problems to overcome in
éstimating eqn (2). First, our tools for quantifying all
the characteristics associated with travel are far from
comprehensive. With home interview surveys only
information about travel time and travel cost was usually
sought (at the level cf the individual trip). Such
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IMPROVEMENTS TO INDIVIDUAL TRAVEL CEOICE MODELS

characteristics as comfort, convenience, etc., are yet

to be satisfactorily guantified and are therefore replaced
by a constant which represents some sort of average value
for this subset. Second, because we only have a single
observation on any one individual for a particular travel
decision, it is necessary to group individuals in order to
estimate the set of parameters B;. Thus, the more
homogeneous the group is, with respect to the 'weightings'
they attach to each characteristic, the more precise

will be the parameter estimates.

Past practice has largely been to estimate just one
set of parameters for the whole population, using the whole
sample. This has led to estimated equations of low
significance, poor goodness-of-fit and which have been
unable to reproduce the original sample results satisfactorily
{(Talvitie 1979%3). To overcome the lack of homogeneity ¥
in the sample, the practice of including dummy variakles ;
of a socio~demographic flavour in the utility function has
eventuated. The three deficiences c¢ited above have
certainly been overcome by this practice but quite
clearly it is at odds with theory of consumer choice
behaviour enunciated above.

Apart from being theoretically inconsistent the
practice also adds little from the point of view of policy
analysis. The sensitivities to changes in level-of-service
variables (the only variables over which the decision
maker has any contrxol) is dulled by the fact that they
represent the weighted averages over the whole sample.
Obviously some individuals (or groups cof individuals),
in the sample will be more sensitive to changes in i
particular level-of-service (LOS8) wvariables than will others. ;
If these different sensitivities by different groups could
be separated out, then a much more powerful tool eventuates.
Of course these sensitivities can be separated ocut simply
by estimating separate equations for each (relatively)
homogeneous group.

The linear combination of LOS variables for a ;
particular mode is cften referred to as the generalised cost |
of travel for that mode. What amounts to a scaling
factor is used to match the units of cost to the level
of utility which is dimensionless. Williamsg (1977}
embraces this approach tor produce the following equation:

Unk = =)h (C-ijk + Gnk) (3)

nk - the utility associated with the kth alternative,

( _ for the nth population sub-group;

Cij = the generalised cost (in money terms) of travel
by the alternative mode, k, between i and j;

= the constant that represents the average effect, J
again in money terms, of the unquantifiable

aspects (e.g. comfort, convenience, etc.,) of _

travel by the kth alternative, for the nth

population sub-group;

wherel

Gnk
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and. AN = a scaling or dispersion parameter, with the
units of the inverse of money, for the nt
population sub-group.

Note that egn (3) could alsc apply at the level of the
individual, as do egns (1) and (2), but for the purposes

of estimation, grouped data must be used. Williams

(1977) has however recognised the requirement of segmenting
into homogeneous. sub-groups by the introduction of a
subscript, n, to denote person type, and in a later
publication he specifically estimated separate models

for distinct sub-groups (Williams and Senior 1977 and
Senior and Williams 1877},

Equation (3) is related to eqn (2) thus (dropping
the subscript for convenience):

N

vk =3, g %% = -acizk - ask (4)

2
in egn (4} 26K represents that subset of §2 By XR which
cannot as yet Ee quantified (e.g. comfort, convenience,
etc.) and ic;i® is that subset of j, 8, X, that can be
gquantified. ﬁote therefore that cigk is dlso a linear
additive function of the (quantifia%le) attributes of travel,

as A is only a scalar.

*

. The multi-nomial leogit model simply uses the
utility associated with each alternative, Uk, in the
following manner to produce an estimate of the probability
of selecting an alternative, k from a set of alternatives,
K-
exp Uk
P = J — (5)
(k/K) Ek exp Uk
where P(k/K) = probability of selecting alternative k

from the set of alternatives, K;
and U, = is as defined previously.

The formulation of the utility function adopted
in egn (3) allows distinct behavioural differences between
sub-groups to be observed. First, different sub-groups
may have different &'s which reflects their differing
appreciation of the intangible characteristics of travel.
Second, different sub-groups may have different x's,
reflecting their differing sensitivities to absolute
changes in their (perceived) generalised cost. Third,
groups may exhibit different cij's (although not
specifically allowed for in egn” (3) above), reflecting
differing relative weightings on each of the guantifiable
attributes of travel, The second and third points of
behavioural difference are tied together; nevertheless
it may be at times fruitfull to consider them as separate.
Only the first point of behavicural difference is able
to be established if a single utility function is estimated
for the whole population using socio-economic dummy
variables. The effects of the first point of behavioural
difference and the second point of behavioural difference,
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known as the 'shift’ effect and the 'slope' effect .
respectively, on the probability function generated by the
MNL model are illustrated in Fig 1. L

Probability

Utility Difference

Fig 1 — 'Shift and 'Slope” effects in a binary choice

The Assumption of Trip Independence

A hangover from the days of aggregate modelling
is the implicit assumption that each trip made by an
individual is guite independent of, not only trips made '
by any other individual, but also any other trips made
by that individual. This assumption may be inconsequential
it travel consists overwhelmingly of simple purpose:outings
with the home residence as the focus. Recently some
attention has been drawn to the importance that the
linking of activities (purposes) plays in travel behaviour
(Hensher 1976, Morris, Dumble and Wigan 1979), and
Adler and Ben—Akiva (1979) and Lerman {(1979) formulate
and estimate models which allow. for changes in.activity
linking to occur. Hpwever, apart from these and a. few’
other examples, modellers have continued with this trip
independence assumption. Figure 2 illustrates the problem.

Fiqure 2a and Fig 2b depict two different.travel
patterns that accomplish the same activity pattern.: The
decisions faced by someone that might end up -under—taking
an activity pattern-such as {a) or (b) would be: - 'Which
activities do I wish to pursue?': 'At what times. and:where
do I wish to pursue them?'; and 'By what means (l.ed
mode) will I get to the activity sites?'; Naturally- there
is a large degree of interaction between these decisions,
but if one decision was to be modelled by itself, as.
is often the case, then the influence of the other  decisions
must first be eliminated. For example, if modal-choice
is the criterion decision, then it should be examined on
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Work place Work place

Fig 2 — {a} Two 2-stage journeys
{b} One 3-stage journey

the condition that its destination, timing and linking

are known. An even more specific example would be that

if one were to model modal choice for the journey-to-
work, the linking condition (as well as the destination
and timing conditions) should be accounted for. Referring
again to Figs 2a and 2b, the linking conditions of 2a

may result in a different mode choice equation from that
which results from the conditions represented in 2b.

Estimation and the Range of Observations

One aspect of current modelling practice often
overlocked is that of the range of observations for each

independent variable. This has consequences for prediction
and interpretation.

Any model is after all only an approximation. If
it is used for prediction when all the independent
variables take values within the range over which the
estimating set spanned, then the modeller can be reasonably
confident that his approximate answer will not be too far
off the mark. In fact, he can, calculate statistical
confidence limits on his answer. On the other hand if
some independent variables take values outside their
observed range then the resultant answer is unknown in
terms of its precision. A particularly good exampie
of this would be predictions about the effects of doubling
or quadrupling the price of petrol. When the new value
for the independent variable 'car out-cf-pocket cost' is
calculated, a significant number of the population will
have a value for 'car out-of-pocket cost' well outside the
range of this variable found in the estimating set.
Outside this range a completely different pattern of
behaviour may prevail. In other words the functional
relationship between utility and 'car out-of-pocket cost'
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approximated by the estimated model may be completely
inappropriate once outside the estimation range.

Interpretation cannot be meaningful unless the
range of observations is borne in mind, particularly
when generic variables are used. For example, 'access
time' is a variable common to most modes. Thus when
modal choice is being modelled 'access time' is usually
specified as a generic variable. However the range of
access times observed for each mode is likely to vary
considerably. In almost all areas of a city, excepting
the central areas, ‘'access time' for car drivers and
car passengers is likely to be quite small. On the
other hand, in precisely these same areas the access time
by public transport is likely to be guite large. Thus
if only cobservations from suburban areas are used,
there will be two distinct clusters of 'access time'
and the cco-efficient estimated for 'access time' may well
be axeflection of the slope of a straight line drawn between
the centres of these two groups. In extreme cases this
slope could result in a negative sign on the co-efficient.
In such extreme cases, of course, 'access time' should be
treated as a alternative - specific variable.

A CASE STUDY : MODAL CHOICE IN BALLARAT

Ballarat Home Interview Survey Travel Data

In an attempt to demonstrate or investigate the
importance of these issues raised above,HIS data from
the Victorian provincial city of Ballarat {population
55,000 in 1970, the year of the HIS) were analysed
and several MNL models of journey-to-work were estimated
and are reported below.

Ballarat HIS was conducted as part of the Ballarat
Transportation Study (Harris Lange — Voorhees 1971).
Details of the HIS procedures are alsc contained in
Dumble (1979). Generally speaking this HIS was certainly
no worse than most others in many respects and superior
in one or two important areas: in particular, the collection
of information about all personal trips, including on-foot
and on-bicycle which was unusual for the time (see Dumble
1979). This, coupled with the facts that the data were
stored in an easily manageable format and that the full
data set was of a convenient size, meant that the Ballarat
HIS data set was a suitable one on which to begin investi-
gations.
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Journey—to-Work in Ballarat

Journey-to-work modal choice has been the subject
of much investigation, for which there are several reasons.
First, the journey-to-work usually accounts for
the largest proportion of trips by any single purpose.

In Ballarat this was no exception; it accounted for some

22 per cent of all trips. Second, the journey-to-work

trip is the easiest to understand in that it is repetitious
and is usually invariant for any particular individual

in both time-of-day and destination.

If the conventional classification of trips used
in transportation modelling is followed, i.e. each
trip is treated as an independent event and dominant mode
coding is used to ensure that only one mode is recorded
for any cne home-to-work, or vice versa, trip (i.e.
'linked' trips are used not ‘unlinked' trips), then
the breakdown of journey-to-work trips by mode is as listed
under model 1 in Table II. '

3

THE ESTIMATION PACKAGE; MLOGIT

The MLOGIT program was used to estimate all the
models reported below. Details of this program are
available elsewhere (Hensher 1978b, Goschnick 1980},
but: some of its limitations should be mentioned here.
First, there is an upper limit of 20 explanatory wvariables
allowed for any single model estimation. Initially this
sounds guite reasonable, however there is a further limit-
ation caused by the peculiarities of the data input
requirements of the MLOGIT program. Variables enter
MLOGIT in the form of differences. For example, 'in-vehicle
travel time' (IVT) is entered as the difference between
'in-vehicle travel time' for the chosen mode and each
of the rejected alternatives. Hence, a modal choice
model having, say four alternatives, will require the
input of three variables difference values for each
explanatory variable i.e.

(IVT chosen - IVT alternative 1)
(IVT chosen - IVT alternative 2)
(IVT chosen - IVT alternative 3)

This particular treatment of data for each alternative

is not unique to MLOGIT. On the contrary, it is the key
to the mathematical benefit derived from adherence to the
IIA assumption, by which all multinomial logit programs
gain. However, the requirement of having the data in this
format before entering the program, is peculiar to MLOGIT.
So,while the input format itself is not restrictive,

it does necessitate a large degree of data pre—processing.

While the second limitation is not overly restrictive
for a binarv or three alternative choice situation
{(i.e. 20 explanatory wvariables reguire input of 20 and
40 variable difference wvalues, respectively), the
modelling of say six alternatives (as is the case in
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the exercise reported below) results in a severe limit
of only eight explanatory variables. This meant that
one gquestion which the authors had hoped to investigate
could not be fully addressed. Namely, should certain
level-of-service {L0OS) variables such as 'in-vehicle
travel time', 'access time' etc., be included in models
as mode-specific variables or, as generic variables

as is usually the case {e.g. Hensher 1979%a}.

Simulation of LOS Variables

The HIS data contains very few LOS variables;
‘total travel time' by the chosen mode for all trips
was recorded as the difference between 'start' time
and 'end' time, as was 'fare' for trips made by public
transport. However, even for these, the corresponding values
for modes not chosen, were obviously not recorded. So
it was necessary to simulate all LOS variables, for all
recorded trips, for the full mode choice set. To this
purpose a computer model of Ballarat was built up, using
the ARRB in-house traditional transport package, TRAMP.
A brief description of the simulation follows. The full
account can be read elsewhere (Goschnick 1980).

Road, public transport, walk and other (bicycle
and motorcycle} networks were superimposed on to one another
to represent the complete Ballarat transport system. The
public transport network included both bus and tram
(which was still in opezration in 1970} routes. The
networks were based on a 130 traffic zone breakdown
of Ballarat, as used for the Ballarat Transportation
Study (Harris Lange-Voorhees 1971).

The relevant network parameters were set as follows:

(a) Road network link speed; 48 km/h.

(b) Road network zone connector speed; 32 km/h.

(c) Private vehicle out-of-pocket running cost; 2.8¢/km
(the cost of running a six cyclinder sedan in 1970).

(d) Taxi fare; 12.4¢/km plus a 20¢ flagfall.

(e} Tram route speed; 35 km/h.

(£) Bus route speed; 40 km/h.

(g) Public¢ transport fare stage; 5.5¢ (a variable fare-
stage function is not available in the TRAMP
package) . .

{h) Public transport wait time; set to a third of the
headway .

(i) Bicycle speed:; 20 km/h.

(3) Walk speed; 4.8 km/h.

The access mode to public transport was assumed
to be 'walk', except where the trip origin zone was
considered to be far removed from the public transport
system, in which case 'car passenger' was the assumed
access mode.
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The optimum path seeking algorithm of the TRAMP
program produced directly the L0OS variables: car, car
passenger and taxi in-vehicle times; car out-of-pocket
running costs; taxi fare; public transport in-vehicle
time, fare, access time and wait time; walk time; and
cycling time, for all zone pairs. Access time for car
and car passenger was assumed to be three minutes if
the trip began or ended in & CBD zone, and one minute
if the trip began or ended in an outer zone. Wait time
for a taxi was assumed to be five minutes.

The ranges of LOS wvariables over which each of
the models was estimated are represented in Table 1.

Description of Journey-to-Work Models Estimated

As was indicated in the first part of this paper
the initial journey-to-work model estimated, corresponded
to that commonly adopted; wviz-all trips with one end
as 'home' and the other as 'work', irrespective of:

(a) what other trips were made on the same journey; and
(b} the socic-economic characteristics of the traveller.

Further, the model was a simultaneous one and therefore,
each mode was implicitly assumed to be equally dissimilar
to every other mode; there was no hierarchy of modes.

The important departure from common practice was that
only LOS attributes were used as explanatory variables.

The parameter estimates of model 1, and foxr all
subsequently estimated models appear in Table 2.
Discussion of these parameter estimates is left until
the next section. The significant feature of model 1
is that a full sample enumeration results in some 62.4
per cent of cases being correctly 'forecast' by it.
However, this relatively good result is superficial as
model 1 actually predicted that in every case the mode
taken would be 'car driver'. As Table II indicates
62.4 per cent of travellers in the sample did travel
as car drivers.

Model 2 had the same specification as model 1 but
those home-work trips that were part of alcnger journey
sequence were’eliminated from the estimation set. Thus
only those trips that were part of a simple two stage
journey (as depicted in Pig 2a) were included. Once
again the superficially good result for the full sample
enumeration was due to the fact that every case was
'forecast' to travel as a 'car driver'.

The fact that the sample was so heavily dominated
by the car driver mode is a problem in itself. MNL
models perform best when there are about even number
choosing each alternative. The subsequent models were
much better in this regard, which may be another advantage
in this whole approach.




TABLE 1

LOS VARIABLE RANGES FOR EACH MODEL

Model Low]'Hign

Low 2 High

Low 4 Hign

Low 3 High

Low ~ High

Car Driver
-IvT

-Cost

-AT

Car Passenger
=IvVT

-Cost

-AT

Public Transport
~IVT

-Cost

-AT

Taxi
-IVT
-Cost
—=AT

Walk

-Walk Time 1.3 160.1

Bicycle

15.4
48.9
23.4

11.5
121.8
5.0

2.0 125.6 2.3 103.1

-Cycle Time 0.3 44.4 0.3 38.0 0.5 29.7 0.6 24.4

6.5

2.0 125.6

29.7

Note: Where AT Access time for medes 1, 2 and 3
Wait time for mode &

IVT In-vehicle time
Cost

All times are in minutes and all costs in cents.

nn ot n

Car running costs for mode L and fares for modes 3 and 4.

See Table IT for model specifications.
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TABLE 2

ALTERNATIVE MODELS OF MODE CHOICE FOR
JOURNEY-TO-WORK IN BALLARAT.

MODEL 1 MODEL 2 MODEL 3 MODEL 4 MODELS MODEL 6
DESCRIPTION OF MODEL
Market Segment® : All All All-NC U-NC L—NEC LG-C
Joumney Type® @ All 25 25 25 28 25
Numbar of obs, : 3488 3120 897 446 251 474
VARIABLES IN MODEL ?
Car driver 2176° 1938 251
—  access time —0.19107 —0.19008
(-10.43) (—2.83)
— invehicle time 0.02283 0.01179 0.23768
{043} (021} (0.128)
—  cost —0.05463 —0.05700 —2.4859
(~5.95) (-2.69) (—6.94)
- constant 1.2833 1.29560
(17.89) (17.12)
Car passenger 540 484 222
—  aceess tme ~0.19107 —0.19008
(—10.43} (—%82)
—  inwghicle time ~0.11z1 —0.12508 0.23768
1 92) (—2.00) @ 126)
-~ cost - - —2.4859
(—5.94)
—  constant - - -1.8811
(2535)
Public transport 172 153 153 34 18
-~ access time —0.19107 -0.13008 ~0.11062 —0.10759 —01128
{~10.43) (—9.83} -2i2 (-2 6G) (—1.34)
- wait time - - - - -
— inwehicle time 0.03604 0.03329 ~0.22812 -0.22451 —0.33863
(0.8%) (084} {-2.93) (=2.64) {—1.70)
= fare —0.05463 —0.05700 0.00600 0.00971 —0.00016
(—2.95) {-2.69) {0 34) (43} (—0.004)
—  constant - - - — -
Taxi 21 16 16 2 14
—  wait time —0.18107 —0.18008 ~0.11062 -0.10758 —0.1129
(—18.43) {—2.83) (-3.12) (-2.60 (—1.54)
~  inwehicle time - - —0.80563 —0.62127 —0.72972
(—2.70) (—2.44) (-1.43)
-~ fare —0.05463 —0.06700 0.00800 0.00971 —0.0H16
(—2.25) —964) (0.34) {043 (—0.004)
—  constant - - =-11730 -1 1188 —1521
. {--2.05} {--1.78) {—1.63)
Waik 357 a3z 327 146 181
—  total time —0.05139 —0.05250 ~0.12884 —0.12618 —0.14455
(-7.46} (—7.11) (—8.45) (—&.14) (—4.45)
- constant - - 0204 z7a0 36719
(9.85) (7 22} (6.44)
Dther (Bicycle & Motercycle) & 222 201 201 69 132
— -total time —0.18571 -0.18979 —0.23870 -0.22414 —0.32804
(—6.55) (—6.25) {—4.65 (—4.01) (—2.51}
—  consiant - 0.79325 0.58932 13826
(2 65) (164} [2.45)
MODEL PERFORMANCE
—  degrees of fresdom 7 7 6 [} 6 H
- Zlog A 316.94 263.64 300,51 189.43 2914 552 00
- A 0.0382 0.0360 0.1202 0.1788 0. 21016 08422
- %correct 62.4* 62.2° 58.1 0.8 526 99.0
Nates: § 'Market Segment Code: NC — Non Car Modes; € — Gar Modes: U — Unlicenced; L — Licenced: G — in a Group af twa or more travellers
2, Journey Type Code @ 25 — Two Stage trevel only; All — Two Stege and Multi-Stage Travel
3, Bold-Type figures are the varlable co- efficients and figures in itelics and parentheses are t-test values
4, Numbecs in this type-face indicats the number af observations
5, This result is misleading as all travellers were ‘predicted” to travel as car drivers by this mode!
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The stringent requirements of the TIA assumption
could perhaps be better accommodated by a hierarchical or
nested approach to mode-choice modelling when several
alternatives are available. It may be reasonable to
assume that people do not necessarily make an instantaneous
choice between all possible alternatives, but that they
perceive that distinct groups of alternatives are available.
They initially choose between the grouped alternatives
and then choose an alternative from within the chosen
group (Williams 1977, McFadden 1979, Hensher 1979b).

There is some evidence, or at least speculation, that,
in small eities such as Ballarat, the initial mode choice isg
between car and non-car, and the subsequent choice in the

non—car group between bus and walk (Morris
et al. 1979),

It was therefore decided to group ‘car driver'
and 'car passenger' together as one initial alternative
and the remaining four as the other. The characteristics
that distinguish between these two grouped alternatives
naturally embody the characteristics of the individual
modes, or elemental alternatives, themselves. To embody
these characteristics algebraically into a model requires
the estimation of the second level of choice, i.e. the
'within group’ choice, first. The 'inclusive price' or
'logsum' term that emerges is then passed up to the
'between group' choice level (Williams 1977, McFadden

1979). That is, it is necessary to estimate the lower
order choice model first.

Model 3 was estimated on all non-car two stage
journeys-to-work for which there were some 697 observations
which, except Ffor 'taxi' were relatively evenly spread
across the modal alternatives. As Table 2 shows, model
3 'predicts' the chosen mode correctly in 58.1 per cent
of cases. Although this percentage is lower than the 62
per cent for models 1 and 2 it should be pointed out that
for the 697 observations of model 3 not one was correctly
pPredicted by models 1 and 2 - recall that all cases were
predicted by models 1 and 2 to travel as 'car driver'.
Thus for this sub-sample, model 3 is a much better model
at least in terms of reproducing the observed behaviour,

The next aspect to be investigated was that of
market segmentation. Since already the distinction was
made between 'car' and 'non-car' a logical means of market
segmentation would be by some attribute pertaining to
car ownership Or usage. Williams and Senior (1977),
amongst others, have used level of ecar ownership as the
market segmentation attribute, however analysis of the Ballarat
data (to be reported by the authors at a later date)
indicated that the single most important attribute in
'explaining' differences in travel behaviour was that of
pPossessionor not of a current driver's licence.
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Thus models 4 and 5 were specified exactly the same
as wags model 3, but the data used to estimate them
were segmented into'unlicenced' and 'licenced' travellers
respectively. The results of the full sample enumeration
of models 4 and 5 show an improvement over that of model 3.
Model 4 correctly 'predicted’ in 60.3 per cent of cases
and model 5 in 62.6 per cent. In actual numbers, models
4 and 5 combined, correctly ‘predicted’ 426 cases out of
the 697, compared to model 3 which correctly predicted
in 405 cases. Neither approach predicted any traveller
to use taxi, which was probably due, in part, to the small
number of observations involving taxi travel. It would
probably have been best to have removed taxi trips from
the data set altogether, and eliminated ‘taxi' as an
alternative.

The final model reported upon here is model 6,
which represents the lower level of the '‘car' group of
alternatives. Model 6 evolved after some experimentation
within this 'car' group, it is not the ‘car' group
equivalent of model 3 in the ‘non-car group. Such
a model proved impossible to estimate, even when the data
were segmented into 'iicenced' and 'unlicenced' travellers.
0f course, once the 'licence'/unlicenced’ segmentation is
adopted, those 'unlicenced' travellers who are in the
'car' group naturally must fall into the 'car passenger'
(elemental) alternative, hence no model is reguired.

3

Te overcome the problem with 'jicenced’ travellers,
another means of partitioning the data was tried. It is
yreasonably common practice for the purposes of modal choice
modelling to define 'car driver alone' and 'car driver
with passengers' as separate modes {e.g. Pak Poy and
Associates 1978). It was decided to extend this concept
a little further by distinguishing between persons
travelling by themselves and those travelling in a group,
irrespective of the mode chosen. It does not seem
unreasonable to expect that this factor may influence
the choice of mode, particularly if 'car driver' and
tcar passenger' are identified as distinctly different
modes. Unfortunately, the data do not allow the
identification of whether the traveller was alone or
accompanied, for any mode other than car. When 'car driver'
was the chosen mode the number of passengers in the car
was recorded and naturaliy, if going as a 'car passenger',
the traveller must have been accompanied by at least one
other person.

Model 6 was estimated on the sub-sample data set
consisting of all travellers licenced to drive a car and
who actually travelled in a group in a car. It was binary
choice between 'car driver' and 'car passenger’'.

Unfortunately there were very little differences
between LOS variables for 'car driver' and those for ‘car
passenger'. The only variable that had some scope for
variation was that of'cost', or more preeisely cost sharing
between the driver and his/her passengers. The following
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approach to cost sharing was adopted. If the chosen (i.e.
observed) mode was 'car driver' then it was assumed for

the sake of calculating the cost of 'car driver', that

all persons in the car shared equally the total car running
costs. The cost of the alternative mode, 'car passenger'
was assumed tobe one half the total ecar running costs. If

on the other hand the chosen mode was ‘car passenger',

then the perceived cost of 'ear bassenger' mode was also
assumed to be one half of the total car running costs.

(The number of people in the car was not recorded when

the mode was 'car passenger'). The cost of the 'car
driver' mode, the alternative mode in this case, was assumed
to be the full car running costs.

The full sample enumeration that resulted from
model 6 is extremely encouraging; only five observations
out of 474 (or one per cent) were incorrectly predicted.

What emerged from the successive modifications to
the original, and commonly adopted, mode choice specifi=-
cation was a relatively complex model of individual
choice behaviour. The emergent model is illustrated
in Fig 3 which is split into two segments, one for
travellers who do not possess a driver's licence and one
for those who do. Models 4, 5 and 6 do not exhaustively
cover the models required to fully specify the overall
model depicted in Fig 3. The additional models are all
of a higher order and therefore require the 'pasging-up'

- of a logsum or inclusive price. This is the next phase

in the modelling exercise.

Models 4, 5 and 6 do not fully cover all the
elemental alternatives. Neither 'car driver alone' nor
'unlicenced' car passengers are covered. 1In fact, of
the 3120 two-stage journeys-to-work, only 1171 (or 37.5
per cent) are covered by models 4, 5 and 6. A measure
of the improvement that the above modelling approach
offers over the more commonly adopted approach is that
for these 1171 observations, model 1 correctly predicted
the chosen mode in 251 (21.4 per cent) of cases (i.e.
in the 251 cases where ‘car driver' was actually chosen),
whereas the structured and segmented approach resulted in
correct predictions in 895 (76.4 Per cent) of cases.

Interpretation of Model Estimates

The form of the utility function specified by
egn (3) earlier makes comparisons between the models a
little easier to comprehend. The conversion from the
simple form of Table 2 to that in eqn (3) is achieved
by setting A equal to the co-efficient for the actual
money cost variable (which was always specified as
generic). Table 3 presents the results of this
transformation for model 1.
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‘Unlicenced” Travellers

Model 5

‘Licenced’ Traveliers

Fig 3 — Hierarchical mode choice mode! of journey — to-work in Ballarat
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TABLE 3

MODEL 1 EXPRESSED IN GENERALISED COST FORM

A = =0.05463

C'fj Sk
l. Car briver 5.498AT - 0.418IVT* + COST ~-23.49
2. Car Passenger 3.498AT + 2.054IVT 0
3. Public Transport 3.4$8AT - 0.660IVT* + COST 0
4, Taxi 3.498AT + COST 0
5. Walk ¢.841 TIME 0
6. Other 3.58%9 TIME 0
Where AT Access time for modes I, 2 and 3

= Wait time for mode &

IVI = In-vehicle time
COST = Car running cost for mode 1, and fares for modes 3 and 4
IIME = Total journey time.

* Not significant at the five per cemt level.

One problem that can be encountered when expressing
model results in this manner is that the 'cost' variable
may not be significantly different from zero, or, even worse,
it may. be significantly different from zero and have
the wrong sign. In the cases of models 3, 4 and 5 the
'cost' variable was not significantly different from zero.
For the sake of interest however the remaining model
results (i.e. models 2 and 6} are expressed in the
generalised cost form in Table 4 and 5 respectively.

It is dangerous to draw too many implications
from the rxesults of Table 3, 4 and 5 and indeed Ffrom
Table 2. However there is the advantage that each of-
the subsequent models are estimated on sub-sets of
previously estimated models, and therefore statistical
tests of significance are easily made. For instance,
to test whether or not the co-efficient estimate for a

particular variable varies between models, the test statistic
is simply:

_ B - B
t = T
where B~ = ig the estimate obatined from the full set, (i.e.
R a preceeding model)
8 = is the estimate from the model in question
and S” = is the standard deviation {(estimate) associated

with the estimate obtained from the full set.
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Space requirements prevent the reporting of all
possible significant test results here, but some of the
more interesting ones are now discussed. Returning to
the generalised cost specification of Tables 3, 4 and

5 it appears that the estimate of A for medel 6 is easily
significantly different at the one per cent level from
either estimates of % for models 1 and 2. However, there
is no significant difference between the estimate of X
for model 2 and that for model 1 at the five per cent
level.

TABLE 4

MODEL 2 EXPRESSED IN GENERALISED COST FORM

k k
€ij 8 :

i

Car Driver . 33 5AT 0. 210IVT* + COST -22.73

Car Passenger .3856AT + 2. 124IVT
Public Transport 3.335AT ~ 0.584IVT* + COST
Taxi . 333AT 4+ COST

Walk . 821 TIME

U o W N
o 0 0 ¢ ©

Other . 830 TIME

Note:

Where AI

Access time for modes i, 2 and 3
wait time for mode 4

IVI = In-vehicle time
COSI = Car running costs for mode I, and fares for modes 3 and 4
TIME = Iotal journey time.

* Not significant at the five per cent lewel.

The direction of change in A is reasonable. The
hypothesgis in the first part of this paper was that as
a greater degree of homogeneity was achieved by each step
of market segmentation or data partitioning, then the
greater the sensitivity,as measured by A,that that sub-group
would exhibit with respect to changes in generalised costs.

There are several general features of Table II that
should be commented upon. The first, is that in every
instance LOS variables that were significant had the
correct sign. The second, is that there was a consistency
in the patterns of those variables that were not significant.
For instance, 'in-wvehicle time' was never significant
for the 'car driver' mode ('in-wvehicle time' was specified
as alternative-specific rather than generic, except
in model 6). Yet it was significant for the 'car passenger'
mode. Similarly public transport ‘in-vehicle time' was
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not significant in the fully simultaneous mcdels 1 and 2,

but became much more significant in models 3, 4 and 5; the
models pertaining to the non-car group of alternatives.

As well, for models 3, 4 and 5 'fare' was not significant

yet it had been in models 1 and 2.

TABLE 5

MODEIL 6 EXPRESSED IN GENERALISED COST FORM

2t = -2,4859
cis® sl k
1. Car Driver with -0.088IVT* + COST 0
Passengers
2. Car Passengers -0, 096IVT* + COST 0.76
Note:

Where AT = Access time for modes i, 2 and 3
Wait time for mode 4

VI = In—vehicle time
COST = Car rumning costs for mode 1, and fares for modes 3 and 4
IIME = Iotal journey time.

and the subscript '!' indicates the 'licenced' segment of the sample
* Not significant at the five per cent level.

These results are open to interpretation, but it
would seem reasonable to assume that the lack of significance
of particular variables is at least in part due to that
variable not being influential on the choice outcome, and
not entirely due to measurement, mis-specification and
other errors which are surely present. Thus, for this
set of travellers,it can be tentatively concluded that
for their journey-to-work the 'in-vehicle time' for the
'car driver' mode is not really a factor that influences
their choice of modes. Furthermore, fer that sub-set
of travellers who travelled to work by one of the four
non-car group of modes (697 of them), the cost or fare
paid for the trip does not appear to be a significant
factor in their choite of mode. For that group of
travellers who travelled to work in a group in a car
the cost sharing arrangements may be the most important
factor in determining who drives.

It is important to realise the conditional nature
of these results. That is for instance, the choice of
whether or not to travel in a group may be very sensitive
to travel time, but, having decided to travel in a group
in a car, travel time ceases to be an important factor
in subsequent dJecisions. Thus the importance of each
LOS variable cannot be fully appreciated until the
complete model is estimated (see Fig 3).
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LIMITATIONS OF THE APPROACH

In the first part of this paper several advantages
of the outlined modelling approach were put forward. In
gaining those advantages it is inevitable that it would
be at the cost of incurring some disadvantages.

More Segmentation VS More Data

The most obvious disadvantage is that the proposed
modelling structure (see Fig 3} regulres the estimation
of more equations or sub-models than does the current
approach. It is not so much the extra expense involved
in either estimating these sub-models cr running them
in a production mode, but the extra data requirements,
that is the disadvantage. In our example there was no
problem as there were plenty of observations to begin
with, but inevitably when one model (e.g. model 1) is
replaced (eventually) by 4 sub-models for the 'licenced'
segment of the population and a further 2 sub-models for
the 'unlicenced' segment, obtaining sufficient data could
be a problem. For instance adopting the same methodclogical
approach for ‘'personal business' journeys instead of
'work' journey still using the 1970 Ballarat HIS data,
would have meant only starting with 434 observations
for model 1 and the rejection of 178 (41 per cent) of
those when proceeding to model 2 (2 stage journeys only).
(This is not to suggest that 'personal business' travel
should be modelled with exactly the same hierarchical
structure and the same market segmentation schema, as one
point being made is that a much more flexible approach
to modelling travel behaviour, still within the confines
of MNL and HIS data, should be adopted. This flexibility
should encompass the predictive tasks that await the final
model and the insights that pre-modelling analysis of
input data provide).

'A problem with adequate sample size' is often the
argument advanced against market segmentation and by
inference, in favour of the inclusion of socio~economic
variables directly into the utility function., It is
certainly conceded that there must bhe balance struck between
the extent of market segmentation and the number of
observations available to estimate any model, but it
does seem most logical to at least investigate the
appropriateness &f the restrictive assumption implicitly
brought about by the inclusion of socio-economic variables
directly into the utility function (i.e. that they only
have a 'shift' effect and not a 'slope' effect - see Fig
1} when there are sufficient data to do so.

How to Deal with Multi-Stage Travel

A more complex problem is that caused by the removal
of multi-stage journeys from the estimation set. The
importance of multi-stage jourheys (see Fig 2b) is
increasingly being recognised (e.g. Hensher 1976 and Morris
et al. 1979) but so far 1little progress has been achieved
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modelling them. There would seem to be at least two
fronts on which to proceed: either 2 stage and multi-
Sstage journeys can be modelled separately but not
independently (e.q. recursively); or the 'trip' as the
unit of analysis can be dispensed with completely and
replaced with 'journey' (or 'sojourn') whether 2 stage
or multi-stage. Either way, the "activity' view of
travel behaviour would seem likely to emerge in place
of the current 'trip-pupose' view. :

An interim, practical, solution may be to postulate
an hierarchy of trip purposes (or activity types) and
use it in rather the same manner as 'dominant mode
coding' is used. That is, to make the assumption that
say 'work' is the most dominant acitivity, as far as mode
choice is concerned, and that any activities coupled
with the journey-to-work (e.g. personal business) do not B
influence the choice of mode. Thus our models 2, 3, 4, S
5 and 6 would be re-estimated with the 3 stage journeys E
(involving a work trip) included in the estimation set,
This seems reasonable in view of the fact that none of
the co-efficient estimates of model I, (i.e. with all
journeys included) were significantly different to those
of model 2 (estimated without multi-stage journeys).
1f, say, 'personal business' was the next most dominant
purpose then the mode choice model for 'personal business'
would be estimated on the data set containing all 2
stage 'personal business'’ journeys plus all those multi-
stage journeys that contained 'personal business’' trips
except those that also contained a 'work' trip. This
procedure would continue down to the least dominant trip
purpose, which model would be estimated solely on 2
stage journeys.

The only remaining problem is to determine the
ordering of trip purposes from most-dominant to least-
dominant. This may have to be determined arbitrarily,
but some sensitivity testing (of the order) may help.

Functional Form

A further limitation, rather than problem, with the
approach so far, is that only the linear form of the LOS
variables was investigated. Various transformations of
the level-of-service variables (e.g. logarithmic) have
been tested by others and it is now possible to systematically
investigate functional® form with the aid of Box-Cox and
Box-Tukey transforms (gsee Gaudry and Wills 1978, Johnson
1979 and Hensher and Johnson 1979).

It is alsoc possible to investigate different
functional forms of LOS variables using socio-economic
variables; the most common being the division of money
cost variables by income (see for example Charles River
Associates 1976).
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Although the results of such transformations have
heen encouraging they were not investigated at this stage
in the interests of keeping the exercise as simple as
possible. Certainly, it is an area worthy of further
investigation and will form part of a later stage in
the current project, but consideration of functional
form takes us into the very complicated and complex
area of 'perceptual' measures vVersus physical measures.

Perceptual VS Actual Measures

The specification of physical measures instead of
perceptual measures would be a mis-specification of the
utility function, if the two did not co-incide, and would
result in errors in any model estimated on such data
(Koppelman 1976). In a sense, experimentation with
functional form is attempting to determine how individuals
'‘map' physical measures (e.g. LOE variables) into
perceptual ones.

In the general case where network simulation is
used to produce LOS measures there is an additional
source of error; measurement error; due to the reported
values of these variables not being the actual wvalues
(Koppelman 1976). The use of zonal averages (for that
is what the network simulation approach results in) has
been suggested by Horowitz {1979) as being one of the
largest single sources of error in individual choice
(MNL) models. However Horowitz's comments appear to be
more directed at the use of zonal averages for socilo-
economic variables than for I0S variabies which may go
much closer to meeting the stringent conditicns reguired
to prevent biased estimates (Horowitz 1979). In the case
being discussed here the simulated LOS variables may well
meet Horowitz's conditions as the zones themselves are
relatively uniform in size and shape and are small in
comparison to most zonal systems adopted for travel
analysis (see Dumble 1879), therefore minimising both
the in-zone and between-zone variance. Hensher (1977}
concludes that reported travel times (i.e. starting time/
finishing time) are close to the true and perceived time
and, as our simulated times compared well with reported
times, it is suggested that in this case the error
introddced by simulation on a zonal basis of L0S wvariables
(particularly travel times) should be less than the amount
suggested by Horowitz {1879). An obvious conclusion in
this regard must be to place strong emphasis on the
specification of network characteristics (i.e. 1ink
speeds, distances, cost and fare functions, etc).

These drawbacks and limitations are not necessarily
unique to the approach outlined above. Nevertheless it

was important that they be raised, as their airing immediately

opens up areas for further refinement.



IMPROVEMENTS TO INDIVIDUAL TRAVEL CHOICE MODELS

FUTURE DIRECTIONS

The investigation as outlined earlier is not vet
completed as the higher models have not been estimated.
However it is certainly not premature to include in
this paper a section dealing with future research
directions, still within the confines of HIS data and
network simulation of LOS variables.

In view of the discussion in the immediately
preceding seation on functional form and 'perceptual’
vs 'actual' LOS data, an cobvious area for further research
awaits us there.

A computer package, BLOGIT, is now available which
incorporates Box—Tukey transforms and therefore enables
the systematic investigation of functional form (Crittle
and Johnson 1980). It is the intention of the authors
to re-estimate many of the models reported in Table II
using this package.

A further intended refinement is to make use of
the "unlinked' travel data to investigate more fully
the access mode/primary mode relationship. For our
exercise the 'linked' trip was used in which only the
most dominant mode appears; information about any access
modes having been removed. As described earlier, all LOS
variables including access times, etc, were simulated.
However, only cursory checks were made of simulated
access LOS against actual (i.e. recorded)} access LOS.

Recent investigations have suggested that the choice
of access mode has some influence on the eventual choice of
the dominant mode and Talvitie (1979%b) has produced an
hierarchical access mode/primary mode individual choice
model. In a small relatively uncongested city such as
Ballarat,access mode is probably not important, but in
larger Australian cities, where it is thought that ‘

a need exists to attract travellers out of their cars
and back onto public transport, it may be an important
factor influencing the likelihood of this modal shift
occuring. For this reason it it suggested that access
mode be investigated on HIS data from larger Australian
cities. .

Related to the point of more detail about access
mode is the possibility that perhaps more detail is
reguired about aspects of travel time. Access time,
wait time and in-vehicle time are already separated out,
but it has been suggested that within 'in-vehicle time'
further subdivision into 'time stopped’ and 'time moving'
may significantly improve the explanatory power of models
(Hensher and McLeod 1977). Thus any work put into improving
network specification, particularly intersection delays,
should be repaid in terms of improved models.
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Of course, none of these foreshadowed improvements
gets to the heart of the 'perceptual' versus 'actual’
issue. Unfortunately the use of HIS data and network
simulation preclude the use of 'perceptual' data. However
the collection of reliable 'perceptual' data is fraught
with pitfalls too. For instance asking pecople how long
it would take them to complete a certain trip by an
alternative mode does not always elict the correct
perceptual or behavioural response. However,whether
'perceptual’ or 'actual' variables are chosen there
is still a great deal of research to be done before all
the igsues involved can be resolved.

Allied to the necessity for further work on the
identification of elemental attributes of LOS (e.g.
separation of 'stopped’ time from 'moving' time) and on
the 'correct' specification of access modes, is a more
general need to identify 'elemental’ modes. That is, the
seven differentmodes depicted in Fig 3 are, in a sense,
arbitrarily defined, and are not necessarily the only .
set of alternatives perceived by Ballarat residents, nor -
is each altermnative necessarily correctly identified.
For instance, 'public transport' in Ballarat at the time
of the survey consisted of trams and buses. As these modes
were not supposed by regulation to compete for patronage,
it seemed reasonable to assume them to be one mode for
the sake of the modelling exercise. It is possible to
remove any bias introduced by 'vepresenting' more than
one elemental alternative by a single alternative (Hensher
1979b), but there remains the problem that it is still up
: to analyst to define elemental altermatives. It is up
se E: to him to decide, for instance, if driving a car alcone
>f . ig different to driving one accompanied by passengers,

[ or indeed, if driving with one passenger is different to

driving with two (or any other number of) passengers.

One further area where plenty of research scope still
exists is that of market segmentation. The dimension
used in this exercise; licence/non-licence holding; was
chosen arbitrarily, albeit with some prior knowledge. A
more efficient method is, however, called for.

There are several possible,less arbitrary methods
available for market segmentation. Perhaps the simplest
is to test each potential segmentation dimension in
turn with analysis-of-variance or similar technique,
e.g. Automatic Interacticn Detection (AID) - see Hensher
1976.

Ancther approach offerring some potential is to perform
a factor analysis on the 'raw' soclio-economic variables
in order to determine the principal or underlying factors
explaining travel behaviour. This approach has been tried
in a slightly different travel context with a degree of
success {Conroy 1978}.

ng
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Perhaps the most appealing method yet proposed
is that of using the utilities directly - the utility
classification method {(see Reid 1978}).

Whichever method is chosen it is important to
realise that in each modelling situation a separate
market segmentation investigation will probably need
to be undertaken. It is simply inefficient to choose

a2 market segmentatign schema without investigating the
data first. i

There is therefore still plenty of room for further
improvements to the modelling procedure outlined earlier
in the paper. Some of the suggested areas for improvement

are generally applicable to any of the modelling approaches
currently in use.

CONCLUSIONS

Although the exercise has not yet been completed -
(i.e. all the model stages depicted in Fig 3
have not yet been estimated) there are a number of
tentative conclusions that can be drawn.

The exercise has clearly demonstrated that the
strict specification of the utility function in terms
solelyof level-of-service (LOS) attributes,and in
conjunction with market segmentation,can lead to meaningful
modal choice models, particularly when careful selection
of the estimation set and a sensible approach to choice
set determination are adopted. Although this leads to
a more complicated model structure, the increase in
understanding that it brings makes it worthwhile. The
resultant model should be particularly useful in the
short term policy analysis context.

The essential message that emerges is that much
thought should go into the selection of a model structure
for each particular modelling task being undertaken.

It is important to allow the data to help select model
structure. 'Getting to know the data' is also important
from the point of view of interpretation.

The hierarchical approach also seems to be superior
to the simultaneous approach on the grounds both of theory
(or at least’intuitive reasoning) and practice. In fact,
the way in which the exercise proceeded showed that model
structure, market segmentation and choice set determination
are not separate and independent issues at all, but are
very much connected. Figure 3 clearly demonstrates this
point and alsc the point that a rigid approach to modelling
is inferior to a flexible one where the final model is
arrived at by evolution rather than being pre-determined.




sed
ity

to
=
ed
ose
the

further
arlier
rovement
sproaches

eted

:he
s

aningful
ction
oice

to

The
e

uch
ucture
el
rtant

iperior
theory
fact,
model
1ination
are
this
delling
is
1ined.

DUMBLE AND GOSCHNICEK

Nevertheless there are a number of drawbacks Or
limitations, either specific to the method proposed or
generally applicable to other current modelling approaches
as well, that reguire some resolution before the proposed
method can reach its full potential as a predictive tool.
These limitations are: the trade-off between a greater
number of sub-models caused by market segmentation, an
hierarchical structure and other partitioning of the
data, and the increased number of observations therefore
required to estimate the full model; the problem caused
by multi-stage journeys (although current modelling
practice does not tackle this problem at all); and the
increased 'error' passed on by requiring yet more 'logsum’
or 'inclusive price' terms. As well, the limitations it
shares with other current approaches also bear further
investigation, these being: functional form and the
dilemma between ‘'perceptual’ or 'actual' measures and
finally the determination of the most efficient means
of segmenting the travel market.
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