FORECASTING THE EFFECTS OF CHANGES IN THE WORK-PLACE LOCATIONS ON RESIDENTIAL DEVELOPMENT AND TRIP GENERATION

T.R. Jefferson Lecturer, University of New South Wales

P. Walsh Doctoral Candidate, University of Newcastle

R.W. GIBBERD Senior Lecturer, University of Newcastle

C.H. SCOTT SENIOR LECTURER, UNIVERSITY OF NEW SOUTH WALES

ABSTRACT:

In this paper, we consider the problem of forecasting the development of residential sections of an urban area in the near future (5 to 10 years hence). A special entropy model is developed which gives the most probable residential development for given changes in work-place. A simple algorithm is devised which efficiently solves the resulting nonlinear mathematical program. This analysis is applied to a sample city. The results provide estimates of the changes in residential locations as well as imputed trip origin and destination costs. Trip distribution is carried out implicity.

TNTRODUCTION

One commonly used approach in urban planning today involves the preparation and evaluation of several alternative strategies for the urban area under study. Each strategy represents a physical development plan for land use and facilities in the city, and the evaluation attempts to determine that strategy with lowest total cost. This cost includes such variables as infrastructure cost, travel time, environmental, pollution and social costs, etc.

The Planning and Environmental Commission is currently preparing alternative strategy plans for the Hunter Region, and one aspect of this exercise that lends itself to modelling is the following. Given that there are alternative locations for future industrial and service employment areas in the region, how can one forecast the probable development of future residential areas, corresponding to each alternative distribution of jobs? An answer to this question would ensure that the planner's recommendations for future work-place locations and residential areas would be consistent with each other. Although there are many mathematical urban models that would appear to be relevant to this problem, it has been found necessary to modify existing models to take into account the infringement of zonal population capacities.

Entropy models as defined by Wilson (1970) have contributed significantly to explaining residential location patterns in urban regions and of inter-urban traffic flow. Residential location models are often referred to as attraction-constrained models while trip generation transport models are cited as production-attractionconstrained models. Both concepts are interpreted as members of a family of spatial interaction models in urban processes.

To build such models we firstly assume that our study area is divided into zones which are numbered sequentially. We define the level of interaction between zone i and zone j as T_{ij} . In particular, this interaction will represent the flow of workers from residences to jobs and hence the system under investigation can be thought of as assignments of individual workers to an origin-destination table.

For our purposes T_{ij} is the number of home-work trips for zone i to zone j. To determine the T_{ij} we are given the following information:

 \boldsymbol{O}_i — the total number of workers who live in i

- D_j the total number of jobs in j
- c_{ij} the 'cost' of travelling from i to j
- C the total expenditure on travel to work
- T the total number of workers to be allocated

There are many sets of T_{ij} which would satisfy the given data. It makes sense therefore to choose that set of T_{ij} which is most probable. This is the "Principle of Insufficient Reason" of Laplace. The resulting problem is the maximization of entropy given the data available. We have the following mathematical model.

Model A Maximize <u>TI</u> (1 i,j	Model A	Maximize		(1)
--------------------------------------	---------	----------	--	-----

 $\sum_{j} T_{ij} = 0_{j}, \quad \forall i \qquad (2)$

 $\sum_{i} T_{ij} = D_{j}, \quad \forall j$ (3)

$$\sum_{j,j} c_{ij} T_{ij} = C$$
(4)

T_{ii} ≥ 0 ∀i,j

Model A is, of course, the doubly constrained "gravity" model mentioned earlier and is inappropriate for a residential location model since the O_i's are to be

determined rather than given. It is, however, appropriate as a transport model. The usual attraction-constrained model is also not appropriate because it does not impose a housing capacity constraint on each zone, although Batty (1976) has shown how this model may be modified to take account of this constraint. For this reason, Model B has been formulated to impose this constraint explicitly and it is this modification which makes Model B more suitable for residential location than earlier models used.

In Model B the housing capacity 0, for zone i is replaced by the parameter G_i which is the potential housing capacity in zone i in existing or proposed accommodation. The equality constraints (2) are replaced by inequality

constraints (6) and we obtain the following mathematical problem:

Model B	Maximize	$\frac{T!}{\pi T_{ij}!}$	(5)
éve.		i,j - '	

) i

subject to
$$\sum_{i} T_{ij} \leq G_{i}$$
, $\forall i$ (6)

$$T_{jj} = D_j$$
, $\forall j$ (7)

$$\sum_{i,j} c_{ij} T_{ij} = C$$
(8)

∀i,j T_{i.i} ≥ 0

In the next section each model is analysed via geometric programming and algorithms for their solution are presented. Then Model B is applied to both a model city and the Newcastle (N.S.W.) urban area. Finally, conclusions on this analysis are presented.

METHODOLOGY

In this section we take the two models presented in the introduction and develop them. The models are first analysed then algorithms for solution are presented. To use the models calibration is next considered. Finally forecasting using the entropy models is developed.

Analysis of the Entropy Models

To facilitate the analysis two changes are required. The factorials in the objective functions are cumbersome. These shall be replaced by somewhat simpler functions using the Stirling approximation (N! = $N^{N} e^{-N}$). The budget constraints, (4) and (8), shall be absorbed into the objective function (1) and (5) respectively by the factor

exp $\{-\beta(\sum_{i,j} c_{ij} T_{ij} - C)\}$ β is a multiplier associated with the equality (4) or (8) and since the maximization is not over β or C, the term β C may be dropped. Let $R_{ij} = e^{-\beta C_{ij}}$. Model A now becomes:

Model C Maximize
$$\Pi$$
 $\left(\frac{R_{ij}}{T_{ij}}\right)^{T_{ij}}$ $(T)^{T}$ (9)

subject to

$$\sum_{j} T_{ij} = O_{i}, \quad \forall i \qquad (10)$$

$$\sum_{j} T_{j} = D_{j}, \quad \forall j \qquad (11)$$

 $T_{i,i} \ge 0$, $\forall i,j$

Model B becomes:

Model D Maximize
$$\prod_{i,j} \begin{pmatrix} R_{ij} \\ T_{ij} \end{pmatrix}^{T_{ij}} (T)^{T}$$
 (12)

subject to
$$\sum_{j} T_{ij} \leq G_{i}$$
, $\forall i$ (13)

$$\sum_{i} T_{ij} = D_{j}, \quad \forall j \qquad (14)$$

 $T_{ij} \ge 0$, $\forall i, j$

A dual problem can be obtained for each of the models C and D. The dual to Model C is:

Model E	Minimize	∏q _i ⁻⁰ i i	π p _j ^{-D} j j	(15)
---------	----------	--------------------------------------	---------------------------------------	------

subject to $\sum_{i,j} R_{ij} q_{i} p_{j} \le 1$ (16) $q_{i} > 0$, Vi

The dual to Model D is:

Model F Minimize
$$\prod_{i=1}^{n} q_i^{-G_i} \prod_{j=1}^{n} p_j^{-D_j}$$
 (17)

subject to
$$\sum_{i,j}^{k} R_{ij} q_{j} p_{j} \leq 1$$
(18)
$$0 < q_{i} \leq 1, \quad \forall i$$
$$p_{i} > 0, \quad \forall j$$

These duals are developed using geometric programming in Jefferson and Scott (1978).

When these models C, D, E, F are solved the relationship between the solutions of the pairs C,E and D,F is:

$$\frac{T_{ij}}{T} = R_{ij} q_i p_j, \quad \forall i,j$$
(19)

 $R_{ij}/({}_{i,j} R_{ij})$ is the a priori probability of a trip going from i to j. $R_{ij} q_i p_j$ is the a posteriori probability of a trip going from i to j. Relating the R_{ij} back to travel costs c_{ij} we recall $\beta c_{ij} = -\log R_{ij}$. We can associate a new travel cost \hat{c}_{ij} with the a posteriori probability by

$$\hat{c}_{ij} = -\frac{\log R_{ij}}{\beta} - \frac{\log q_i}{\beta} - \frac{\log p_j}{\beta}$$
(20)

log q_i

Defining

$$c_{i0} = -\frac{\beta}{\beta}$$
$$c_{0j} = -\frac{\log p_j}{\beta}$$

(20) becomes

 $\hat{c}_{ij} = c_{ij} + c_{i0} + c_{0j}$

 $\mathbf{c}_{\mathbf{i}\,\mathbf{0}}$ is the cost associated with the equation

$$\sum_{j} T_{ij} = O_{i}, \forall i \text{ or inequality } \sum_{j} T_{ij} \leq G_{i}, \forall i.$$

 $\mathbf{c}_{0\,\mathrm{i}}$ is the cost associated with the equation

 $\sum_{i} T_{ij} = D_{j}, \forall j$

The costs $c_{i0}^{}$, $c_{0,j}^{}$ may be positive or negative.

Note that the entropy models affect the cost c_{ij} only through costs associated with origin (c_{i0}) or destination (c_{0j}) . Congestion costs along the route from i to j

are not captured. If congestion costs differ from the original estimates they must be calculated separately. The focus on the near future should alleviate the need for their estimation.

Algorithms

To solve the models C and D, algorithms can be devised through the analysis of the pairs of models C,E and D,F (see Jefferson and Scott, 1978). To solve C,E we use the following algorithm:

Step 1 Set n = 0 and $p_j^n = D_j/T$

Step 2

Set n to
$$n + 1$$
 and

$$q_{i}^{n} = \frac{O_{i}}{T(\sum_{j} R_{ij} p_{j}^{n-1})}$$

 $p_{j}^{n} = \frac{D_{j}}{T(\sum_{i} R_{ij} q_{i}^{n})}$

Step 3

Step 4 Feasibility:

$$T q_{i}^{n} \sum_{j} R_{ij} p_{j}^{n} = O_{i} + e_{i}^{n}$$
, $\forall i$

where e_i^n is the error in the ith constraint. If $|e_i^n|$ is less than a predetermined tolerance for all i go to step 5. Otherwise go to step 6.

Step 5 Optimality:

 $d^n = \sum_{i} e_{i}^n \log q_{i}^n$

is the difference between the logarithms of the objective functions for C and D. $|d^n|$ should be less than a prescribed tolerance. If so go to step 7. Otherwise go to step 6.

Step 6 Set n to n + 1 and

 $p_j^n = p_j^{n-1} / \sum_j p_j^{n-1}$

Go to step 2.

For the pair D,F the algorithm changes slightly to the following algorithm:

Set $T_{ij} = T R_{ij} q_i^n p_j^n$.

Step 1 Set n = 0 and $q_1^n = 1$

Step 2 Set

$$p_{j}^{n} = \frac{D_{j}}{T(\sum_{i}^{\Sigma} R_{ij} q_{i}^{n})}$$

Step 3 Check for feasibility:

$$Tq_{i}^{n} \sum_{j} R_{ij} p_{j}^{n} \leq G_{i} + e_{i}^{n}, \forall i$$

where $e_i^n \ge 0$ is the error on the ith inequality. If e_i^n is less than a predetermined tolerance for all i go to step 4. Otherwise go to step 5.

Step 4 Check for optimality

 $d^n = \sum_i e_i^n \log q_i^n$

is the difference between the logarithms of the objective functions for D and F. $|d^n|$ should be less than a predescribed tolerance. If so go to step 6. Otherwise go to step 5.

Step 5 Set n to n + 1

Set

$$q_{i}^{n} = \min \left\{ 1, \frac{G_{i}}{T(\sum_{j} R_{ij} p_{j}^{n-1})} \right\}$$

Go to step 2.

Step 6

 $T_{ij} = T R_{ij} q_i^n p_j^n$

Both of the algorithms require only the updating of the q and p vectors. The computation involves little more than the calculation of the inner product of q and p with the appropriate row or column of the R matrix which remains constant throughout the computations.

Calibration and Forecasting

To use the entropy models we require estimates for the first model of 0_i , D_j and R_{ij} . The 0_i and D_j are straightforward. If one knows the T_{ij} then a good estimate of the R_{ij} is

$$R_{ij} = T_{ij}/T$$

However knowledge of the T_{ij} is often hard to come by. The costs of travel from i to j (c_{ij}) are easier to calculate. R_{ij} and c_{ij} are related by

$$R_{ij} = 1 / \frac{1}{(e^{c}ij)^{\beta}}$$

where β must be determined. If some T_{ij} or aggregates of T_{ij} are known (such as traffic flow along an arterial road), a choice of β which minimizes the sums of squares of $(T_{ij} - T R_{ij})$ would be reasonable. β could also be obtained from a previous gravity model of the city under consideration or of a city with similar characteristics.

To obtain forecasts from the second model of future demand we need to know the parameters G_i , D_j , and R_{ij} for this model. Under the assumption of little or no change in the c_{ij} 's and β a good estimate of R_{ij} would be

R_{ij} = T_{ij}/T

where T_{ij} and T are obtained from solution of model C. The D_j is calculated from forecasts of jobs in the business and financial districts of the city in the future. The G_i measures the numbers of houses or other sorts of domiciles possible in a particular zone. We assume that all jobs will be filled but all available land is not necessarily built on.

The solution to model D is the most probable distribution of trips from the various origins to the various destinations.

ANALYSIS OF A SAMPLE CITY

The residential location model, model B, has been programmed via the algorithm and results obtained for both a small model city and the Newcastle Urban Area.

Model City

The data for a 12 zone model city was extracted from a paper by Dacey and Norcliffe (1976). No comparison of results with those of their model will be presented. Table 1 gives the travel cost matrix (c_{ij}). The algorithm was programmed on a PDP 11/45 mini-computer using RSTS/E FORTRAN with a maximum job core capacity of about 26K. The program was fully core resident. The total number of workers to be allocated residences was T = 200,000.

Table 2 provides output when β was chosen as 0.80 with specified tolerances $|d^n| = .01\%$ and $e_i = 1\% \times G_i$. The number of iterations required for convergence was 23, representing a CPU time of 7 seconds.

TABLE	1
-------	---

·												
Residential					Emplo	oyment	Zone	j				
Zone i	1	2	3	4	5	б	7	8	9	10	11	12
1	1.2	2.4	2.8	46	2.4	3. 8	5.6	4.0	6.0	7.7	6.7	7.7
2	2.4	1.0	3. 6	3.2	4.8	6.2	7.6	6.4	6.1	5.6	43	5.3
3	2.8	3.6	2.0	3.0	3.0	4.4	47	3.2	3.2	4.9	5.1	6.0
4	4.6	3.2	3.0	1.0	6.0	7.4	77	6.1	3.9	3.3	2.1	3.1
5	2.4	4.8	3.0	6.0	0.8	1.4	2,8	1.6	38	5.2	5.6	6.6
6	3.8	6.2	44	7.4	1.4	0.5	1.4	3.0	5.2	3.1	4.4	5.4
7	5.6	7.6	4.7	7.7	2.8	1.4	0.6	1.5	3.4	1.7	3.0	4.0
8	4.0	6.4	3.2	6.1	1.б	3.0	1.5	08	2.2	3.2	4.0	5.0
9	б.0	6.1	3.2	3.9	<u>3</u> .8	5.2	3.4	2.2	1.0	1.7	1.8	28
10	7.7	5.6	4.9	3-3	5.2	3.1	1.7	3.2	1.7	0.9	1.3	2.3
11	67	4.3	5.1	2.1	5.6	4_4	3.0	4.0	1.8.	1.3	06	1.0
12	7.7	5.3	6.0	3.1	6.6	5.4	4.0	5.0	2.8	2.3	1.0	.05

Travel Cost Matrix (c,) for Model City

Resi-					Empl	.oyment	Zone	j ·					Predicted	
dential Zone i	<u> </u>					Ti	<u>j</u>						Workers	Maximum Workers
	1	2	3	4	5	6	7	8	9.	10	11	12	ΣT _{ij}	G _i
1	13256	2174	3877	174	353	38	7	98	14	1	4	1	20000	20000
2	7025	9224	2830	740	72	8	2	20	18	11	42	8	20000	20000
3	1687	381	3365	287	100	11	7	85	62	б	7	2	6000	6000
4	2973	2903	11248	10581	67	7	5	62	264	172	602	116	30000	30000
5	10946	687	7125	123	2734	555	151	1446	181	24	23	4	24000	24000
6	5851	368	3809	66	2772	1869	758	773	97	209	99	19	16691	20000
7	1386	120	2996	52	905	910	1438	2566	409	641	304	59	11785	20000
8	4986	313	9948	186	2362	253	700	4493	1067	193	137	26	24664	40000
9	1007	398	9948	1079	406	44	153	1.466	2787	641	794	153	18877	20000
10	235	540	2323	1587	121	212	542	599	1448	1106	1078	208	10000	10000
11	389	1136	1470	3078	65	56	142	235	993	597	1402	437	10000	10000
12	258	755	1059	2047	43	37	95	156	660	397	1506	966	7980	20000
vailabl jobs ^{Σ T} ij i	e 50000	20000	60000	20000	10000	4000	4000	12000	8000	4000	6000	2000		

JEFFERSON, WALSH, GIBBERD & SCOTT

Newcastle Urban Area

The second application of the algorithm was to the Newcastle Urban Area with a population of around 340,000. The region is divided into 77 district traffic zones and the T_{ij} 's were determined from a travel time matrix (c_{ij}) prepared by the Urban Transport Study Group. Due to core limitations the now larger matrices (c_{ij}) , (R_{ij}) and (T_{ij}) were accessed from secondary storage (RK05 disks).

Table 3 presents output for a run with β chosen as 0.08, which represents an average travel to work time of approximately 17 minutes, being close to the value calculated from survey data. Tolerances were set at $e_i = 1$ and $|d^n| = .01$. The number of iterations for convergence to this accuracy was 25 which represented a CPU time of approximately 2 minutes and a total elapsed time of $3\frac{1}{2}$ minutes.

		OF Newcastre	Simulated		Maximum
Zone	Given Employment	Given Population	Population	Increase	Population
1	13818	3297	3369	+72	3369
2	8292	801	835	+34	835
3	4895	1604	1634	+30	1634
4	2132	6354	6401	+47	6401
5	1319	5705	5904	+199	5904
6	2955	4357	4412	+55	4412
7	30.89	5191	5241	+50	5241
8	755	6436	6484	+48	6484
9	161	3656	3836	+180	3836
10	916	6889	6977	+88	6977
11	1340	6511	6702	+191	6702
12	1137	5900	5820	-80	5933
13	7483	2122	2122	+0	2122
14	3502	7020	7051	+31	7051
15	2051	8734	8923	+189	8923
16	14788	749	749	-0	749
17	4851	7096	7186	+90	7186

Output for Newcastle Urban Area for $\beta = 0.08$

	TABLE	3 (Cont'a)		
Given Employment	Given Population	Simulated Population	Increase	Maximum Population
551	39	39	+0	39
3271	2229	2229	+0	2229
2759	6 30 7	6367	+60	6367
2027	7937	8379	+442	8379
926	6980	7521	+541	7521
853	6724	7067	+343	7067
1704	6082	6535	+453	6535
969	0	0	0	. 0
1921	3033	3033	+0	3033
1180	7546	7923	+377	7923
832	6452	9396	+2944	9443
1050	4524	9150	+4626	12937
262	468	6242	+5774	6242
380	390	390	+0	390
1799	4876	6620	+1744	17779
475	5869	6788	+919	6788
884	4110	4768	+658	4768
323	7827	6463	-1364	15039
1416	5204	4332	-872	9528
341	3120	4662	+1542	5789
548	65 36	5201	-1335	14508
395	4177	4607	+430	10835
2015	6935	3872	- 3063	11808
160	6235	2454	-3781	6837
554	6222	1730	-4492	6726
337	859	1046	+187	1046
662	6055	7220	+1165	7220
835	6530	8375	+1845	9567
1444	5891	8375	+2484	11252
664	5637	6849	+1212	12820
2315	4869	6035	+1166	6582
	Employment 551 3271 2759 2027 926 853 1704 969 1921 1180 832 1050 262 380 1799 475 884 323 1416 341 548 395 2015 160 554 337 662 835 1444 664	Given EmploymentGiven Population551393271222927596307202779379266980853672417046082969019213033118075468326452105045242624683803901799487647558698844110323782714165204341312054865363954177201569351606235554622233785966260558356530144458916645637	Given EmploymentGiven PopulationSimulated Population5513939327122292229275963076367202779378379926698075218536724706717046082653596900192130333033118075467923832645293961050452491502624686242380390390179948766620475586967888844110476832378276463141652044332341312046625486536520139541774607201569353872160622217303378591046662605572208356530837514445891837566456376849	Given EmploymentGiven PopulationSimulated PopulationIncrease5513939+0327122292229+0275963076367+60202779378379+44292669807521+54185367247067+343170460826535+453969000192130333033+0118075467923+37783264529396+2944105045249150+46262624686242+5774380390390+0179948766620+174447558696788+91988441104768+65832378276463-1364141652044332-87234131204662+154254865365201-133539541774607+430201569353872-306316062352454-378155462221730-44923378591046+18766260557220+116583565308375+1845144458918375+248466456376849+1212

TABLE 3 (Cont'd)

Zone	Given Employment	Given Population	Simulated Population	Increase	Maximum Population
 49	850	5438	7592	+2154	11912
50	813	5711	4374	-1337	34633
51	128	272	295	+23	295
52	794	5386	5062	-324	15904
53	1250	8687	3867	-4820	15156
54 54	673	2690	2521	-169	5363
55	168	775	2803	+2028	23910
56	256	447	481	+34	481
57	1072	6037	2098	- 39 39	7678
58	690	537	560	+2.3	560
59	4340	2249	2249	+0	2249
60	131	714	714	0	714
61	1085	6086	5451	-635	13535
62	734	2671	6319	+3648	23723
63	1478	5626	5 390	-236	38647
64	1021	6432	4793	-1639	12764
65	514	3030	3343	+313	11623
66	3356	4189	4189	+0	4189
67	2988	7329	4350	-2979	25714
68	68	611	4338	+3727	90872
69	471	618	618	+0	618
70	1577	7040	4908	-2132	7040
71	593	4867	3967	-900	4867
72	241	2 39	2 39	0	239
73	2754	7318	4102	-3216	7318
74	2384	8842	3988	-4854	8842
75	242	797	79 7	0	797
76	24	297	297	+0	297
77	220	330	330	+0	330
Total	s 138250	337350	337350		691027

TABLE 3 (Cont'd)

TABLE	4

Travel Costs Associated with the Origin (c_{10}) and Destination (c_{01})

			"``iO'	and Lest.		℃0j′		·
Zone	°i0	c _{Oj}	Zone	°i0	c _{Oj}	Zone	°i0	coj
1	-18.46	18.23	27	-18.65	18.71	53	-6.41	15.15
2	-18.71	18.25	28	-22 70	18.68	54	-14.90	13.98
3	-18.42	18.26	29	-26.76	18.66	55	- 32.06	15 59
4	-18.27	18.22	30	-49.93	18.32	56	-15 92	13.71
5	-18.60	18.21	31	-1798	18.32	57	0	8.96
6	-18.33	18.32	32	-21.48	18.27	58	-12.78	10.19
7	-18.28	18.29	33	-19. 79	17.58	59	-18.06	18.13
8	-18.26	18.13	34	-19 75	17.50	60	-17.99	18.11
9	-18.74	18.06	35	-15.40	16.94	61	-16.44	17.91
10	-18.28	18.16	36	-15.29	16.07	62	-28.25	17.99
11	-18.42	18.01	37	-22.42	15.83	63	-16.36	16.60
12	-17.99	18.32	38	-14.68	16.37	64	-13.19	16.65
13	-18.19	18.30	39	-18.57	16.14	65	-17.54	16.05
14	-18.24	18.34	40	- 9.76	14.60	66	- 16. 35	15.99
15	-18.45	18.40	41	-4.98	12.01	67	<u>-9</u> "62	15.35
16	-18.19	18.37	42	01	9.83	68	-40. 36	15.00
17	-18.31	18.27	43	-18.02	7.07	69	-14, 89	13.45
18	-18.15	18.41	44	-20.15	18.04	70	-11.13	14.64
19	-18.17	18.46	45	-21.01	18.22	71	-11.11	11.55
20	-18.28	18.46	46	-22.18	17.94	72	-15.70	14.75
21	-18.82	18.53	47	-20.09	17.32	73	-4.10	8.25
22	-19.03	18. 30	48	- 20.15	17.23	74	-1.22	7.,95
23	-18.72	18.66	49	-21.84	17.98	75	-11.22	8.74
24	-19.03	18.59	50	-13.85	17.16	76	-15.06	14.05
25	-	18.72	51	-18.28	17.20	77	-16.92	16.90
26	-18.05	18.57	52	-16.43	16.68			

The entropy model considers what would happen if jobs were frozen and residential construction was allowed to continue. This plan is more to test the model rather than to consider a conceivable future. As can be seen from

table 3 the model indicates some movement of the domiciles Areas of increase are attractive; areas of decrease unattractive. The planner thus is concerned with possible overcrowding in areas of increase and with deterioration in areas of decrease.

Of greater interest is the information provided by table 4. The table provides imputed changes in costs at the origin and destination. The c_{10} is negative and represents The c_{Oj} is positive a drop in the costs of accommodation. and represents a drop in wages. Both c_{10} and c_{0j} decrease in absolute value as one moves out from the CBD. changes in costs infer a loss in momentum of the city's economy.

While the $c_{\mbox{0}\mbox{j}}$ (the costs associated with the workplace) are relatively consistent there is more variation in the c_{10} . The cost changes associated with residential location (c_{10}) are abnormally high in zones 30, 55 and 68 indicating that people would prefer to live in other zones when accommodation becomes available. The cost change is abnormally low in the following zones: 35, 36, 38, 40, 41, 42, 50, 52, 53, 54, 56, 57, 58, 61, 63, 64, 66, 67, 69, 70, 71, 73 and 74. These zones have better than average attraction

These results do concur with knowledge about the Newcastle area.

Finally as a by-product of the residential forecasts the entropy model provides us with the T. matrix.

CONCLUSIONS

The application of geometric programming techniques has shown that explicit incorporation of a zonal housing capacity constraint (6) to form model B, has produced a fast and efficient algorithm which avoids the pitfalls of attraction-constrained gravity models. Indeed, it would be interesting to compare the characteristics of this algorithm with those modifications suggested by Batty (1976) on the residential location gravity model.

Preliminary examination of the Newcastle Urban Area has shown it will be possible for forecasts of future residential demand in the area to be made, with a continuing study providing insight for the planner in his evaluation of alternative strategies. The preparation and refinement of

alternative zonal work-force locations and future maximum household constraints is at present underway.

REFERENCES

Batty, M. (1976). <u>Urban Modelling</u>, Cambridge University Press, Cambridge.

Dacey, M.P., and Norcliffe, A. (1976). "New entropy models in the social sciences. 1. Elementary residential-location models", <u>Environment and Plan-</u> ning, Vol. 8 pp 299-310.

Jefferson, T.R., and Scott, C.H. (1978). "The analysis of entropy models with equality and inequality constraints", submitted to Transportation Research.

Wilson, A.G. (1970) Entropy in Urban and Regional Modelling, Pion, London.