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Abstract 

By recent advances in technology and Artificial Intelligence (AI), traffic signal control systems 

are preferably designed to have intelligence rather than rule-based structure. Deep 

Reinforcement Learning (RL) as a solution for sequential decision-making problems has been 

extensively used for adaptive traffic signal control (ATSC) systems. The deep RL-based ATSC 

systems have shown promising results versus current actuated (rule-based) ATSC systems. The 

conducted studies have employed different data resolutions either collected in vehicular 

network (e.g., location and speed of individual vehicles) or from camera devices (e.g., queue 

length, density, average speed) for proposed models. However, the impact of different data 

resolutions on deep RL-based ATSC systems training performance has not been studied yet. 

In this study, we compare the three different data resolutions in terms of computation time, 

training stability and results for variety of performance measurements. The Double Deep Q-

Network (DDQN) algorithm is utilized as our intelligent agent. To test and evaluate the 

different data resolutions, a real isolated intersection is modelled in a simulation environment 

with real traffic volume demand. The experimental results have shown that vehicular network 

high resolution data can only contribute to a slight improvement versus camera data in terms 

of reduction in travel time, queue length etc. at the expense of more computation time in 

training models. Also, the camera data is more accessible compared to vehicular network data 

which needs sensors on plenty of vehicles in network. Hence, we recommend using camera 

data which provides aggregated but adequate data for deep RL-based ATSC models.  

 

1.Introduction 

Global population is increasing and Australian cities are more urbanized and congested (Audit, 

2019). Traffic congestion caueses significant costs in fuel consumption, emissions and traffic 

delays. One effective solution to address this issue is to design an efficient traffic signal control 

system. The system can switch and execute the traffic lights for flexible durations so to reduce 

the delay of transportation modes. Hence, traffic signal control systems play a pivotal rule to 

reduce the traffic congestion costs.  

With the advent of technology, intelligent transport system (ITS) devices such as camera, 

bluetooth, radar etc have provided practitioners with high resolution data to improve transport 

systems (Emami et al., 2020). Furthermore, the advanced Machine Learning (ML) algorithms 

have emerged as a powerful tool to improve systems’s performance by intelligent agents 

instead of classical methods or human intervention (LeCun et al., 2015, Mnih et al., 2015). 

http://www.atrf.info/
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Hence, ML-based methods have attracted attentions for transport applications. For traffic signal 

systems, deep reinforcement learning (RL) is a solution to enable smart decision-making of 

traffic lights selection only based on data in place. In fact, the traffic data collected by ITS 

devices are fed to a deep neural network (DNN) which outputs traffic signal action values. The 

traffic signal action selection is then taken by RL algorithm. Once the action is executed, RL 

agent receives a scalar value (i.e., reward) that indicates how good was the selected action. As 

ultimate goal in transportion is to reduce traffic congestion, the reward is defined to minimize 

waiting time. By continuous interaction of deep RL agent with traffic environment, the agent 

learns the optimal policy in action selection which leads to less traffic congestion.  

The conducted studies in literature have shown superior performance of deep RL-based ATSC 

over rule-based traffic signal control methods. The different variety of traffic data have been 

used for proposed deep RL-based models. The traffic data are either assumed to be collected 

in vehicular network (Wu et al., 2020) or from camera devices installed at intersections (Jeon 

et al., 2018). The vehicular network data provides accurate information of individual vehicles 

such as location and speed within the road while camera data can provide aggregated data such 

as queue length, density and average speed of each incoming lane to the intersection. In 

literature, vehicular network data has been extensively used as it brings information-dense data 

samples for deep RL agent training. For real world implementation, however, it is critical to 

examine if the traffic data is available for proposed model. Also, using the higher resolution 

data should be justified considering the installation costs, amount of improvements and 

computation costs. In this study, we compare and investigate the impact of different data 

resolutions on deep RL-based ATSC performance. To represent the real world situation, we 

test and evaluate the deep RL-based ATSC models in a microsimulation model of an 

intersection in Melbourne, Australia. The experimental results have shown that vehicular 

network data can only contribute to slight improvement versus camera data at the expense of 

more training costs. Also, according to the easier accessibility of practitioners to camera data 

versus vehicular network data, camera data is more preferable. Hence, we recommend using 

camera data such as queue length and density for deep RL-based ATSC model.  

 

2. Related works 

Early studies in literature have applied RL on their ATSC problem (Abdoos et al., 2011, 

Prashanth and Bhatnagar, 2010, El-Tantawy and Abdulhai, 2010, Balaji et al., 2010, Arel et 

al., 2010, Grégoire et al., 2007, Wiering, Gao et al., 2017). The RL can learn from data collected 

at intersection to train a smart traffic signal. However, the data used in these studies were coarse 

and abstract because of RL agent’s inability to capture problems with high dimensions. By 

proposing Deep Q-Network (DQN) algorithm (Mnih et al., 2015) RL agents were enabled to 

learn from high-dimensional data. Since then, the research conducted in ATSC literature aimed 

at using data with more information such as queue length of the waiting vehicles, density or 

speed and location of individual vehicles as presented in Table1. Despite employing data with 

different range of resolutions, the extent of improvements has not been investigated. In this 

study we examine the effect of having different data resolutions  in terms of computation costs, 

training stability and improvements for traffic performance measurements. 

 

 

 

 

 

 



ATRF 2021 Proceedings 

3 

 

 

 

 
Table 1: Different data resolutions used in literature 

Study Data resolution 
Number of 

intersections 

(Genders and Razavi, 2016) Speed and location of individual vehicles  1 

(Van der Pol and Oliehoek, 2016) 
Location of individual vehicles for state definition 

and speed of individual vehicles for reward 
1,2,3,4 

(Gao et al., 2017) Speed and location of individual vehicles  1 

(Mousavi et al., 2017) Speed and location of individual vehicles  1 

(Jeon et al., 2018) The image of the intersection 1 

(Wei et al., 2018) 
Queue length, number of vehicles, updated waiting 

time of vehicles, vehicle’s position 
1 

(Genders, 2019) Queue length and density 1 

(Genders and Razavi, 2019) Queue length and density 1 

(Liang et al., 2019) Speed and location of individual vehicles  1 

(Tan et al., 2019) Queue length 24 (traffic grid ( 

(Wei et al., 2019) 
Total number of vehicles and segment wise 

distribution of vehicles on each lane 
4 (Arterial) 

(Zheng et al., 2019) Total number of vehicles on each lane 4 (Arterial) 

(Wu et al., 2020) 
Speed and location of individual vehicles, queue 

length and number of pedestrians 
2, 6 

(Wang et al., 2021) Congestion level of the intersection 36 

 

 

3. Deep Reinforcement Learning 

Reinforcement learning (RL) is one of the machine learning paradigms that enables an agent 

to learn a specific task. The main components of RL are state (𝑠), action (𝑎), reward (𝑟). In 

each time step 𝑡, the intelligent agent takes action 𝑎𝑡 in state 𝑠𝑡, receives reward 𝑟𝑡 and ends up 

in next state 𝑠𝑡+1. The 𝑟 is a feedback signal for RL agent to learn the goal of the task. To 

explore the solution space, random actions are mostly taken at the beginning of the learning 

process. As RL agent is goal-oriented, unwanted actions are penalized with a reward. RL aims 

at maximizing the return 𝐺𝑡 ≐ ∑ 𝛾𝑘𝑟𝑡+𝑘+1
∞
𝑘=0  which is the cumulative of discounted rewards. 

The future rewards are discounted with parameter 𝛾 ∈ [0,1) so to consider the importance of 

immediate rewards over future rewards. The most popular RL algorithm is Q-learning 

algorithm that each state-action pair value (Q-value) is the expected return under policy 𝜋 as 

𝑄𝜋(𝑠, 𝑎) ≐  𝔼𝜋[𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]. Based on Bellman optimality equation, the optimal Q-

value under policy 𝜋 is the one with best (i.e., maximum) value (Sutton and Barto, 2018). By 

continuous interaction of RL agent in the defined state, the RL can finally learn to take the 

optimal actions. To solve the problem with higher number of state-action pairs, the deep 

learning variant of Q-learning algorithm, Deep Q-Network, proposed by Mnih et al. (2015). In 
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this model, the deep neural network is used as a function approximator for Q-value estimations. 

The Q-function with optimal policy  𝜋∗ is calculated as in equation1. 

 

 

Where, 𝜃 is the deep neural network parameter.  

 

4. Deep RL components 

In this study, the deep RL-based model performance is investigated with three different data 

resolutions as follows:  

 

• ATSC-QLAS: lane queue length (QL) and link average speed (AS) 

• ATSC-QLDS: lane queue length (QL) and lane density (DS) 

• ATSC-DTSE: location and speed data for each individual vehicle popular as discrete 

traffic state encoding (DTSE) 

 

Our case study is a real four-leg-four-lane intersection at Rathdowne-Elgin junction in 

Melbourne, Australia.  The simulation model has 4 zones {N,E,S,W} for origin and destination 

demands through which the vehicles are generated with dynamic assignment model. In this 

section the state, action and reward definition for models are explained. 

 

4.1. state definition  

4.1.1. ATSC-QLAS model 

The state definition for this model is queue length of the incoming lanes, average speed of 

incoming link and the current traffic signal state. Hence, the state space is 𝑆 ∈ ℝ𝑖∗𝑗 × 

ℝ𝑗 × 𝕋𝑛. Where, 𝑖 and 𝑗 are the number of intersection lanes and links respectively and, 𝑛 is 

the number of agent actions. It is noted that queued vehicles are vehicles with speed less than 

5 𝑘𝑚/ℎ𝑟. 

 

4.1.2. ATSC-QLDS model 

The state definition for this model is queue length and density of vehicles in incoming lanes 

and, the current traffic signal state. Hence, the state space is 𝑆 ∈ (ℝ × ℝ)𝑖×𝑗 × 𝕋𝑛.  

 

4.1.3. ATSC-DTSE model 

In discrete traffic state encoding state definition, the individual speed and vehicles data is 

collected from incoming lanes. Each lane is discretized to multiple cells that fits the vehicles 

data as illustrated in Figure 1. The vehicle’s average length in simulation is 5 meters so the cell 

length is selected 6 meters. The state space for this model is 𝑆 ∈ (𝔹 × ℝ)(𝑖∗𝑗)∗𝑘 × 𝕋𝑛. Where, 

𝑘 is the number of cells along the link. 

 

 

 

𝑄𝜋∗
(𝑠, 𝑎; 𝜃) = 𝔼𝜋[𝑟𝑡+1 + 𝛾 max

𝑎
𝑄(𝑠𝑡+1, 𝑎; 𝜃) |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]  equation1 
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Figure 1: Discrete traffic state encoding for an intersection 

 

4.2. action definition  

The traffic light has two actions 𝑎 =  {𝑁𝑆, 𝐸𝑊} . The RL agent either executes green light for 

North-South (NS stage) direction or East-West (EW stage) direction. Each action (i.e., stage) 

has two phases each with 5 seconds green time following the 3 seconds amber and 2 seconds 

red light as presented in Figure 2. The first phase includes through and left turn movement with 

permissive right turn movement. The next phase is a protected right turn movement, and it is 

only activated for transition to next action. 

 

 

 

Figure 2: traffic signal phases of simulated intersection 
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4.3. Reward definition 

 

4.3.1. ATSC-QLAS model 

The reward definition must be complied with the resolution of available data. Hence, the 

reward function for this model is to minimize the queue length at the intersection. A vehicle is 

in queue if it has speed less than 5 𝑘𝑚/ℎ𝑟. In each time step, the queue length data for each 

lane is collected as 𝑟𝑡 =  −(𝑞𝑖,𝑗). The reward for each action is the summation of rewards 

during the course of action execution.  

 

4.3.2. ATSC-QLDS model 

The reward function for this model is similar to ATSC-QLAS which is penalizing the queued 

vehicles.  

 

4.3.3. ATSC-DTSE model 

As vehicles speed and location data is available, reward function can be more accurate. The 

reward is to minimize the waiting time for each individual vehicle. In this study we assume 

that vehicles with speed less than 5 𝑘𝑚/ℎ𝑟 are in the queue and they are experiencing delay. 

To include the vehicles in range within [0,5) we define the reward function for each vehicle at 

time step 𝑡 as  𝑟𝑡 =  −(1 − 0.2𝑣𝑡). Where vehicles with speed 𝑣 = 0 𝑘𝑚/ℎ𝑟 have rewards -1 

and vehicles with speed 𝑣 = 5 𝑘𝑚/ℎ𝑟 have reward 0. The vehicles waiting time within this 

range are considered with a linear function. 

 

5. Deep RL model 

In this section the model specification and deep neural network architectures are explained.  

5.1. Double Deep Q-Network algorithm (DDQN) 

In this study the Double Deep Q-Network (DDQN) algorithm is used for training the agent. 

The algorithm leverages two networks, Primary network (𝜃𝑃) and Target network (𝜃𝑇) to 

update the Q-values. First, the Primary network get the states as input and outputs the Q-value 

of corresponding actions. As such, after each action execution, the experience memory tuple 

(𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) is generated and is saved in a buffer memory with size ℬ. To slow down the 

learning fluctuations, Target network (𝜃𝑇) is used for target value estimation. The Target neural 

network is not trained. First, the (state, target) pairs are used for training the primary network 

and Target weights are then updated by soft update rate 𝛽  as 𝜃𝑇 = 𝛽𝜃𝑃 + (1 − 𝛽)𝜃𝑇 . To 

address the correlation between consecutive memory tuples, the experience tuples are 

uniformly sampled with minibatch size ℳ from a buffer memory 𝛽. The DDQN algorithm can 

address the maximization bias of the DQN algorithm as follows: 

𝑄𝜋∗
(𝑠, 𝑎; 𝜃𝑃) = 𝔼𝜋[𝑟𝑡+1 + 𝛾𝑄 (𝑠𝑡+1, argmax

𝑎𝑡

𝑄(𝑠𝑡+1, 𝑎𝑡; 𝜃𝑃) ; 𝜃𝑇) |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] 
 

equation 2 

 

In this study, the action selection for DDQN agent is based on decaying 𝜖-greedy strategy 

where enables agent to do the exploration-exploitation process. To clarify, the agent mostly 

takes random actions with probability 𝜖𝑖𝑛𝑖𝑡  in the beginning of training episodes. The 𝜖  is 
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decreased with decay ratio 𝜂 until it reaches minimum epsilon 𝜖𝑚𝑖𝑛. To learn the task, DDQN 

agent run is repeated for 𝑁 number of episodes. In each episode (𝑒) the model has a warm up 

period (𝑊) before starting the process. The whole algorithm is presented in table 3. The DDQN 

ATSC model hyperparameters are as Table 2. 

 
Table 2: DDQN ATSC model hyperparameters 

Variable Hyperparameters Value 

𝛾 Discounted factor 0.95 

𝛼 Learning rate 0.0001 

𝛽 Target update rate 0.001 

ℬ Buffer memory size 200 

ℳ Mini batch size 32 

𝜖𝑚𝑖𝑛 Minimum epsilon 0.01 

𝜖𝑖𝑛𝑖𝑡 Initial epsilon 0.9 

𝜂 Decay ratio 0.05 

 

5.2. Deep neural network architecture  

5.2.1. ATSC-QLAS model 

This model has a deep neural network with 4 layers. The first layer is a vector with size 16 for 

queue length input and another vector with size 4 for average speed input. The input data is fed 

to 3 fully connected layers with 64, 64 and 32 neurons respectively. The ReLU activation 

function is also applied after each layer. The last layer is the RL actions which is 2 in this study.  

 

5.2.2. ATSC-QLDS model 

This model has a deep neural network with 3 layers. The first layer is a vector with size 16 for 

queue length input and another vector with size 16 for density input. The input data is fed to 2 

fully connected layers with 128 and 64 neurons respectively. The ReLU activation function is 

also applied after each layer. The last layer is the RL actions.  

 

5.2.3. ATSC-DTSE model 

In this model, the state inputs are fed to the CNN with 5 layers. The first layer consists of two 

image-like input (speed and location) both with 16×12 dimensions. It is convolved with 16 

filters each with 4×4 size and stride of 2. Similarly, the next layer is convolution but with 32 

filters each with 2×2 size and stride of 1. Then the flattened images are fed to a fully connected 

layers first with 128 neurons and second with 64 neurons. It is noted that the ReLU activation 

function is applied after each layer. The last layer is the output of the deep CNN network with 

the number of RL actions. In this study, RL has 2 actions to select.  

For all models, the RMSprop optimizer is used for deep neural networks (Tieleman and Hinton, 

2012) to minimize the loss function mean squared error (MSE). 
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Algorithm 1 Double Deep Q-Network Pseudocode for Adaptive Traffic Signal Control 

Initialize: Primary Network 𝑄𝑃(𝑠, 𝑎) with random weights 𝜃𝑃   

Initialize: Target Network 𝑄𝑇(𝑠, 𝑎) with random weights 𝜃𝑇   

Initialize: Experience replay buffer memory ℬ for DDQN agent 

 

   1:  for 𝑒 = 1,2, … , 𝑁 do 

   2:       for  𝑠𝑡𝑒𝑝 = 1,2, … , 𝑊 do 

   3:            Initialize traffic state 𝑆𝑡 matrices 

   4:            Start Exploration-Exploitation strategy  

                  decay = 𝑁 × 𝜂 

                  𝜖 = 1 − 𝑒/decay 

                  𝜖 ← 𝜖 × 𝜖𝑖𝑛𝑖𝑡 
                  𝜖 ← 𝑐𝑙𝑖𝑝(𝜖, 𝜖𝑚𝑖𝑛, 𝜖𝑖𝑛𝑖𝑡) 

   5:            Action selection for observed traffic state 𝑆𝑡 

                  𝑄𝜋∗ = {
argmax

𝑎
𝑄𝑛                                      if  𝜖random > 𝜖

select random actions                            otherwise
 

 

  6:            Execute action 𝑎𝑡 in 𝑠𝑡, receives reward 𝑟𝑡 and ends up in 𝑠𝑡+1 

  7:            store the experience tuple (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in buffer memory ℬ 

  8:            derive ℳ random minibatch tuple samples from memory ℬ 

                 Set 𝑡𝑎𝑟𝑔𝑒𝑡(𝑠, 𝑎) =  {
𝑟𝑒𝑤𝑎𝑟𝑑                        for terminal st    
equation2          for non − terminal 𝑠𝑡 

 

  9:           

10:            Update Target network as 𝜃𝑇 = 𝛽𝜃𝑃 + (1 − 𝛽)𝜃𝑇 

                 Update Primary network by minimizing loss function MSE 

11:       end for 

12:  end for 

 

6. Numerical case-study 

In this study, the Vissim Component Object Model (COM) is used to read, evaluate and change 

the simulation objects with python.   

6.1. Simulation setting and parameters 

The DDQN ATSC model for each data resolution is executed for 1000 episodes. Each episode 

is 1800 second which is the two consecutive 15 minutes volume data collected at the 

intersection for morning rush hour. The origin-destination demand matrices are as follows: 

Matrix no 1 
Table 3-1: Demand matrix number 1 

Date: 08-01-2019 , time: 08:00-08:15 

 N E S W 

N 0 53 217 13 

E 6 0 46 120 

S 37 12 0 15 

W 10 49 11 0 
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Table 3-2: Demand matrix number 2 

Date: 08-01-2019 , time: 08:15-08:30 

 N E S W 

N 0 67 261 14 

E 5 0 54 113 

S 40 12 0 16 

W 10 69 12 0 

 

6.2. Experimental results 

To assess the performance of the deep RL models, data measurement and queue estimators are 

added in Vissim simulation model. The experimental results are set out both in tables and plots. 

The Table 4 represents the mean value the last 100 episodes with the 95% confidence interval. 

To better visualization, the plots are a simple moving average over 50 episodes for the whole 

training episodes. 

 

6.2.1. cumulative reward 

The reward for ATSC-DTSE is the summation of 𝑟𝑡 =  −(1 − 0.2𝑣𝑡) for each time step during 

the action execution which consists of vehicles individual speed data. However, the ATSC-

QLDS and ATSC-QLAS reward is the summation of queued vehicles 𝑟𝑡 =  −(𝑞𝑖,𝑗). As the 

ATSC-DTSE data resolution is higher than ATSC-QLAS, the rewards are more accurate for 

RL agent to take the optimal actions.  

6.2.2. Performance measures 

According to Table1, the ATSC-DTSC is superior in all performance measures. The ATSC-

DTSE outperforms ATSC-QLAS (with queue length and average speed data) for more than 

4%. However, the improvement over the ATSC-QLDS is less than 0.7% which is quite 

negligible. Also, the ATSC-DTSE computation time is 30% more than ATSC-QLSD model 

training time.  

 

 

 

 

 

 

Table 4: Performance metrices results of last 100 training episodes with 95% confidence interval 

model ATSC-QLAS (M1) ATSC-QLDS (M2) ATSC-DTSE (M3) 
M3 

Improvement 

over M1 (%) 

M3 

Improvement 

over M2 (%) 

Cumulative reward -22156.50 ± 163.56 -21352.31 ± 165.08 -20691.06 ± 276.89 6.61 3.1 

Average travel time (s) 31.60 ± 0.13 30.90 ± 0.15 30.76 ± 0.20 2.66 0.45 

Average delay (s) 21.56 ± 0.13 20.84 ± 0.15 20.71 ± 0.20 3.94 0.62 

Average queue length (m) 4.93 ± 0.04 4.73 ± 0.05 4.70 ± 0.07 4.67 0.63 

Average queue length 

maximum (m) 
35.63 ± 0.45 34.80 ± 0.45 34.90 ± 0.68 2.05 -0.29 

Average number of queue 

stops 
72.99 ± 0.51 71.13 ± 0.37 69.46 ± 0.43 4.84 2.35 
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Figure 3: experimental results are the simple moving average over 50 episodes 

 

 



ATRF 2021 Proceedings 

11 

7. Discussion 

The simulation experiments have shown that ATSC-QLDS model (with queue length and 

density data) and ATSC-DTSE model (with information-dense data) have almost similar 

results in terms of travel time and delay reduction, queue length shortening. The ATSC-DTSE 

data is only available in a vehicular network which is hard and expensive when it comes to 

real-world implementation. The ATSC-QLDS data, in turn, can be collected by cameras at the 

intersection. Thus, it is recommended to use queue length and density data for the real-world 

applications of deep RL-based ATSC.  

8. Conclusion 

In this paper, we evaluate the performance of deep RL-based ATSC model with three different 

types of data resolutions. The first data is vehicles queue length of each incoming lane and 

vehicles average speed of the incoming links (ATSC-QLAS model). The second data is the 

vehicles queue length and density for incoming lanes which is provided by camera at the 

intersection (ATSC-QLDS model). The third and highest data resolution is speed and location 

of each individual vehicle in a vehicular network (ATSC-DTSE). The comprehensive 

experiments on an isolated intersection with DDQN algorithm agent has shown the superiority 

of ATSC-DTSE in all performance measures (over 4% versus ATSC-QLAS and less than 0.7% 

versus ATSC-QLDS). However, the ATSC-DTSE training time is 30% more than ATSC-

QLDS. Also, the ATSC-QLDS model camera data is more accessible for real-world 

implementation while ATSC-DTSE must be collected in a vehicular network with high 

communication rates between vehicles. Hence, it is recommended to use the vehicles queue 

length and density data instead of information-dense speed and location data of each individual 

vehicle.  
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